ARC explores the challenge of extracting information from AI systems that isn't directly observable in their outputs, i.e "eliciting latent knowledge." They present a hypothetical AI-controlled security system to demonstrate how relying solely on visible outcomes can lead to deceptive or harmful results. The authors argue that developing methods to reveal an AI's full understanding of a situation is crucial for ensuring the safety and reliability of advanced AI systems.
Nate Soares moderates a long conversation between Richard Ngo and Eliezer Yudkowsky on AI alignment. The two discuss topics like "consequentialism" as a necessary part of strong intelligence, the difficulty of alignment, and potential pivotal acts to address existential risk from advanced AI.
What's the type signature of an agent? John Wentworth proposes Selection Theorems as a way to explore this question. Selection Theorems tell us what agent type signatures will be selected for in broad classes of environments. This post outlines the concept and how to work on it.
Paul Christiano describes his research methodology for AI alignment. He focuses on trying to develop algorithms that can work "in the worst case" - i.e. algorithms for which we can't tell any plausible story about how they could lead to egregious misalignment. He alternates between proposing alignment algorithms and trying to think of ways they could fail.
The RL algorithm "EfficientZero" achieves better-than-human performance on Atari games after only 2 hours of gameplay experience. This seems like a major advance in sample efficiency for reinforcement learning. The post breaks down how EfficientZero works and what its success might mean.