As far as I can tell, this is the entire point. I don't see this 2D vector space actually being used in modeling agents, and I don't think Abram does either.
I largely agree. In retrospect, a large part of the point of this post for me is that it's practical to think of decision-theoretic agents as having expected value estimates for everything without having a utility function anywhere, which the expected values are "expectations of".
A utility function is a gadget for turning probability distributions into expected values. This object makes sense in ... (read more)
Not to disagree hugely, but I have heard one religious conversion (an enlightenment type experience) described in a way that fits with "takeover without holding power over someone". Specifically this person described enlightenment in terms close to "I was ready to pack my things and leave. But the poison was already in me. My self died soon after that."
It's possible to get the general flow of the arguments another person would make, spontaneously produce those arguments later, and be convinced by them (or at least influenced).
Fair enough! I admit that John did not actually provide an argument for why alignment might be achievable by "guessing true names". I think the approach makes sense, but my argument for why this is the case does differ from John's arguments here.
You can ensure zero mutual information by building a sufficiently thick lead wall. By convention in engineering, any number is understood as a range, based on the number of significant digits relevant to the calculation. So "zero" is best understood as "zero within some tolerance". So long as we are not facing an intelligent and resourceful adversary, there will probably be a human-achievable amount of lead which cancels the signal sufficiently.
This serves to illustrate the point that sometimes we can find ways to bound an error to within desirable t... (read more)
So, I think the other answers here are adequate, but not super satisfying. Here is my attempt.
The frame of "generalization failures" naturally primes me (and perhaps others) to think of ML as hunting for useful patterns, but instead fitting to noise. While pseudo-alignment is certainly a type of generalization failure, it has different connotations: that of a system which has "correctly learned" (in the sense of internalizing knowledge for its own use), but still does not perform as intended.
The mesa-optimizers paper defines inner optimizers as performing ... (read more)
... (read more)This definitely isn't well-defined, and this is the main way in which ELK itself is not well-defined and something I'd love to fix. That said, for now I feel like we can just focus on cases where the counterexamples obviously involve the model knowing things (according to this informal definition). Someday in the future we'll need to argue about complicated border cases, because our solutions work in every obvious case. But I think we'll have to make a lot of progress before we run into those problems (and I suspect that progress will mostly resolve the am
Yeah, sorry, poor wording on my part. What I meant in that part was "argue that the direct translator cannot be arbitrarily complex", although I immediately mention the case you're addressing here in the parenthetical right after what you quote.
Ah, I just totally misunderstood the sentence, the intended reading makes sense.
Well, it might be that a proposed solution follows relatively easily from a proposed definition of knowledge, in some cases. That's the sort of solution I'm going after at the moment.
I agree that's possible, and it does seem like a... (read more)
Job applicants often can't start right away; I would encourage you to apply!
Infradistributions are a generalization of sets of probability distributions. Sets of probability distributions are used in "imprecise bayesianism" to represent the idea that we haven't quite pinned down the probability distribution. The most common idea about what to do when you haven't quite pinned down the probability distribution is to reason in a worst-case way about what that probability distribution is. Infrabayesianism agrees with this idea.
One of the problems with imprecise bayesianism is that they haven't come up with a good update rule -- turns ... (read more)
One of the problems with imprecise bayesianism is that they haven't come up with a good update rule -- turns out it's much trickier than it looks. You can't just update all the distributions in the set, because [reasons i am forgetting]. Part of the reason infrabayes generalizes imprecise bayes is to fix this problem.
The reason you can't just update all the distributions in the set is, it wouldn't be dynamically consistent. That is, planning ahead what to do in every contingency versus updating and acting accordingly would produce different policies.
The... (read more)
Fair enough!
I'd be happy to chat about it some time (PM me if interested). I don't claim to have a fully worked out solution, though.
Any more detailed thoughts on its relevance? EG, a semi-concrete ELK proposal based on this notion of truth/computationalism? Can identifying-running-computations stand in for direct translation?
The main difficulty is that you still need to translate between the formal language of computations and something humans can understand in practice (which probably means natural language). This is similar to Dialogic RL. So you still need an additional subsystem for making this translation, e.g. AQD. At which point you can ask, why not just apply AQD directly to a pivotal[1] action?
I'm not sure what the answer is. Maybe we should apply AQD directly, or maybe AQD is too weak for pivotal actions but good enough for translation. Or maybe it's not even good en... (read more)
Your definition requires that we already know how to modify Alice to have Clippy's goals. So your brute force idea for how to modify clippy to have Alice's knowledge doesn't add very much; it still relies on a magic goal/belief division, so giving a concrete algorithm doesn't really clarify.
Really good to see this kind of response.
To be pedantic, "pragmatism" in the context of theories of knowledge means "knowledge is whatever the scientific community eventually agrees on" (or something along those lines -- I have not read deeply on it). [A pragmatist approach to ELK would, then, rule out "the predictor's knowledge goes beyond human science" type counterexamples on principle.]
What you're arguing for is more commonly called contextualism. (The standards for "knowledge" depend on context.)
I totally agree with contextualism as a description of linguistic practice, but I think the... (read more)
I think a lot of the values we care about are cultural, not just genetic. A human raised without culture isn't even clearly going to be generally intelligent (in the way humans are), so why assume they'd share our values?
Estimations of the information content of this part are discussed by Eric Baum in What is Thought?, although I do not recall the details.
I find that plausible, a priori. Mostly doesn't affect the stuff in the talk, since that would still come from the environment, and the same principles would apply to culturally-derived values as to environment-derived values more generally. Assuming the hardwired part is figured out, we should still be able to get an estimate of human values within the typical-human-value-distribution-for-a-given-culture from data which is within the typical-human-environment-distribution-for-that-culture.
I agree. There's nothing magical about "once". I almost wrote "once or twice", but it didn't sit well with the level of caution I would prefer be the norm. While your analysis seems correct, I am worried if that's the plan.
I think a safety team should go into things with the attitude that this type of thing is important a last-line-of-defense, but should never trigger. The plan should involve a strong argument that what's being build is safe. In fact if this type of safeguard gets triggered, I would want the policy to be to go back to the drawing boa... (read more)
Wait, so, what do you actually do with the holdout data? Your stated proposal doesn't seem to do anything with it. But, clearly, data that's simply held out forever is of no use to us.
It seems like this holdout data is the sort of precaution which can be used once. When we see (predicted) sensor tampering, we shut the whole project down. If we use that information to iterate on our design at all we enter into dangerous territory: we're now optimizing the whole setup to avoid that kind of discrepancy, which means it may become useless for detecting tamperin... (read more)
That is exactly correct, yes.
An intriguing point.
My inclination is to guess that there is a broad basin of attraction if we're appropriately careful in some sense (and the same seems true for corrigibility).
In other words, the attractor basin is very thin along some dimensions, but very thick along some other dimensions.
Here's a story about what "being appropriately careful" might mean. It could mean building a system that's trying to figure out values in roughly the way that humans try to figure out values (IE, solving meta-philosophy). This could be self-correcting because it ... (read more)
Pithy one-sentence summary: to the extent that I value corrigibility, a system sufficiently aligned with my values should be corrigible.
My inclination is to guess that there is a broad basin of attraction if we’re appropriately careful in some sense (and the same seems true for corrigibility).
In other words, the attractor basin is very thin along some dimensions, but very thick along some other dimensions.
What do you think are the chances are of humanity being collectively careful enough, given that (in addition from the bad metapreferences I cited in the OP) it's devoting approximately 0.0000001% of its resources (3 FTEs, to give a generous overestimate) to studying either metaphilosop... (read more)
the attractor basin is very thin along some dimensions, but very thick along some other dimensions
There was a bunch of discussion along those lines in the comment thread on this post of mine a couple years ago, including a claim that Paul agrees with this particular assertion.
(I don't follow it all, for instance I don't recall why it's important that the former view assumes that utility is computable.)
Partly because the "reductive utility" view is made a bit more extreme than it absolutely had to be. Partly because I think it's extremely natural, in the "LessWrong circa 2014 view", to say sentences like "I don't even know what it would mean for humans to have uncomputable utility functions -- unless you think the brain is uncomputable". (I think there is, or at least was, a big overlap between the LW crowd and the set of people... (read more)
I think we could get a GPT-like model to do this if we inserted other random sequences, in the same way, in the training data; it should learn a pattern like "non-word-like sequences that repeat at least twice tend to repeat a few more times" or something like that.
GPT-3 itself may or may not get the idea, since it does have some significant breadth of getting-the-idea-of-local-patterns-its-never-seen-before.
So I don't currently see what your experiment has to do with the planning-ahead question.
I would say that the GPT training process has no "inherent" p... (read more)
... (read more)I think maybe our disagreement is about how good/useful of an overarching model ACT-R is? It's definitely not like in physics, where some overarching theories are widely accepted (e.g. the standard model) even by people working on much more narrow topics -- and many of the ones that aren't (e.g. string theory) are still widely known about and commonly taught. The situation in cog sci (in my view, and I think in many people's views?) is much more that we don't have an overarching model of the mind in anywhere close to the level of detail/mechanistic specifi
I think my post (at least the title!) is essentially wrong if there are other overarching theories of cognition out there which have similar track records of matching data. Are there?
By "overarching theory" I mean a theory which is roughly as comprehensive as ACT-R in terms of breadth of brain regions and breadth of cognitive phenomena.
As someone who has also done grad school in cog-sci research (but in a computer science department, not a psychology department, so my knowledge is more AI focused), my impression is that most psychology research isn't about... (read more)
Thanks for the thoughtful response, that perspective makes sense. I take your point that ACT-R is unique in the ways you're describing, and that most cognitive scientists are not working on overarching models of the mind like that. I think maybe our disagreement is about how good/useful of an overarching model ACT-R is? It's definitely not like in physics, where some overarching theories are widely accepted (e.g. the standard model) even by people working on much more narrow topics -- and many of the ones that aren't (e.g. string theory) are still widely k... (read more)
Hope it turns out to be interesting to you!
This lines up fairly well with how I've seen psychology people geek out over ACT-R. That is: I had a psychology professor who was enamored with the ability to line up programming stuff with neuroanatomy. (She didn't use it in class or anything, she just talked about it like it was the most mind blowing stuff she ever saw as a research psychologist, since normally you just get these isolated little theories about specific things.)
And, yeah, important to view it as a programming language which can model a bunch of stuff, but requires fairly extensive user in... (read more)
I think that's not quite fair. ACT-R has a lot to say about what kinds of processing are happening, as well. Although, for example, it does not have a theory of vision (to my limited understanding anyway), or of how the full motor control stack works, etc. So in that sense I think you are right.
What it does have more to say about is how the working memory associated with each modality works: how you process information in the various working memories, including various important cognitive mechanisms that you might not otherwise think about. In this sense, it's not just about interconnection like you said.
We also know how to implement it today.
I would argue that inner alignment problems mean we do not know how to do this today. We know how to limit the planning horizon for parts of a system which are doing explicit planning, but this doesn't bar other parts of the system from doing planning. For example, GPT-3 has a time horizon of effectively one token (it is only trying to predict one token at a time). However, it probably learns to internally plan ahead anyway, just because thinking about the rest of the current sentence (at least) is useful for th... (read more)
Imagine a spectrum of time horizons (and/or discounting rates), from very long to very short.
Now, if the agent is aligned, things are best with an infinite time horizon (or, really, the convergently-endorsed human discounting function; or if that's not a well-defined thing, whatever theoretical object replaces it in a better alignment theory). As you reduce the time horizon, things get worse and worse: the AGI willingly destroys lots of resources for short-term prosperity.
At some point, this trend starts to turn itself around: the AGI becomes so shortsight... (read more)
Recently I have been thinking that we should in fact use "really basic" definitions, EG "knowledge is just mutual information", and also other things with a general theme of "don't make agency so complicated". The hope is to eventually be able to build up to complicated types of knowledge (such as the definition you seek here), but starting with really basic forms. Let me see if I can explain.
First, an ontology is just an agents way of organizing information about the world. These can take lots of forms and I'm not going to constrain it to any partic... (read more)
Suppose instead the crossing counterfactual results in a utility greater than -10 utility. This seems very strange. By assumption, it's provable using the AI's proof system that . And the AI's counterfactual environment is supposed to line up with reality.
Right. This is precisely the sacrifice I'm making in order to solve Troll Bridge. Something like this seems to be necessary for any solution, because we already know that if your expectations of consequences entirely respect entailment, you'll fall prey to the Troll Bridge! In fact, y... (read more)
I'll talk about some ways I thought of potentially formalizing, "stop thinking if it's bad".
If your point is that there are a lot of things to try, I readily accept this point, and do not mean to argue with it. I only intended to point out that, for your proposal to work, you would have to solve another hard problem.
... (read more)One simple way to try to do so is to have an agent using regular evidential decision theory but have a special, "stop thinking about this thing" action that it can take. Every so often, the agent considers taking this action using regular evide
You say that a "bad reason" is one such that the agents the procedure would think is bad.
To elaborate a little, one way we could think about this would be that "in a broad variety of situations" the agent would think this property sounded pretty bad.
For example, the hypothetical "PA proves " would be evaluated as pretty bad by a proof-based agent, in many situations; it would not expect its future self to make decisions well, so, it would often have pretty poor performance bounds for its future self (eg the lowest utility available in the given scena... (read more)
Ok. This threw me for a loop briefly. It seems like I hadn't considered your proposed definition of "bad reasoning" (ie "it's bad if the agent crosses despite it being provably bad to do so") -- or had forgotten about that case.
I'm not sure I endorse the idea of defining "bad" first and then considering the space of agents who pass/fail according to that notion of "bad"; how this is supposed to work is, rather, that we critique a particular decision theory by proposing a notion of "bad" tailored to that particular decision theory. For example, if a specifi... (read more)
Seems fair. I'm similarly conflicted. In truth, both the generalization-focused path and the objective-focused path look a bit doomed to me.
Great, I feel pretty resolved about this conversation now.
I would further add that looking for difficulties created by the simplification seems very intellectually productive. (Solving "embedded agency problems" seems to genuinely allow you to do new things, rather than just soothing philosophical worries.) But yeah, I would agree that if we're defining mesa-objective anyway, we're already in the business of assuming some agent/environment boundary.
(see the unidentifiability in IRL paper)
Ah, I wasn't aware of this!
Btw, if you're aware of any counterpoints to this — in particular anything like a clearly worked-out counterexample showing that one can't carve up a world, or recover a consistent utility function through this sort of process — please let me know. I'm directly working on a generalization of this problem at the moment, and anything like that could significantly accelerate my execution.
I'm not sure what would constitute a clearly-worked counterexample. To me, a high reliance on an agent/worl... (read more)
Right, exactly. (I should probably have just referred to that, but I was trying to avoid reference-dumping.)
... (read more)I pretty strongly endorse the new diagram with the pseudo-equivalences, with one caveat (much the same comment as on your last post)... I think it's a mistake to think of only mesa-optimizers as having "intent" or being "goal-oriented" unless we start to be more inclusive about what we mean by "mesa-optimizer" and "mesa-objective." I don't think those terms as defined in RFLO actually capture humans, but I definitely want to say that we're "goal-oriented" and have "intent."
But the graph structure makes perfect sense, I just am doing the mental substitution
Maybe a very practical question about the diagram: is there a REASON for there to be no "sufficient together" linkage from "Intent Alignment" and "Robustness" up to "Behavioral Alignment"?
Leaning hard on my technical definitions:
- Robustness: Performing well on the base objective in a wide range of circumstances.
- Intent Alignment: A model is intent-aligned if it has a mesa-objective, and that mesa-objective is aligned with humans. (Again, I don't want to get into exactly what "alignment" means.)
These two together do not quite imply behavioral alignment, becau... (read more)
I think there's another reason why factorization can be useful here, which is the articulation of sub-problems to try.
For example, in the process leading up to inventing logical induction, Scott came up with a bunch of smaller properties to try for. He invented systems which got desirable properties individually, then growing combinations of desirable properties, and finally, figured out how to get everything at once. However, logical induction doesn't have parts corresponding to those different subproblems.
It can be very useful to individually achieve, sa... (read more)
I agree that we need a notion of "intent" that doesn't require a purely behavioral notion of a model's objectives, but I think it should also not be limited strictly to mesa-optimizers, which neither Rohin nor I expect to appear in practice. (Mesa-optimizers appear to me to be the formalization of the idea "what if ML systems, which by default are not well-described as EU maximizers, learned to be EU maximizers?" I suspect MIRI people have some unshared intuitions about why we might expect this, but I currently don't have a good reason to believe this.)
For... (read more)
They can't? Why not?
I meant to invoke a no-free-lunch type intuition; we can always construct worlds where some particular tool isn't useful.
My go-to would be "a world that checks what an InfraBayesian would expect, and does the opposite". This is enough for the narrow point I was trying to make (that InfraBayes does express some kind of regularity assumption about the world), but it's not very illustrative or compelling for my broader point (that InfraBayes plausibly addresses your concerns about learning theory). So I'll try to tell a better stor... (read more)
No such thing is possible in reality, as an agent cannot exist without its environment, so why shouldn't we talk about the mesa-objective being over a perturbation set, too, just that it has to be some function of the model's internal features?
This makes some sense, but I don't generally trust some "perturbation set" to in fact capture the distributional shift which will be important in the real world. There has to at least be some statement that the perturbation set is actually quite broad. But I get the feeling that if we could make the right statement there, we would understand the problem in enough detail that we might have a very different framing. So, I'm not sure what to do here.
Great! I feel like we're making progress on these basic definitions.
InfraBayes doesn't look for the regularity in reality that NNs are taking advantage of, agreed. But InfraBayes is exactly about "what kind of regularity assumptions can we realistically make about reality?" You can think of it as a reaction to the unrealistic nature of the regularity assumptions which Solomonoff induction makes. So it offers an answer to the question "what useful+realistic regularity assumptions could we make?"
The InfraBayesian answer is "partial models". IE, the idea that even if reality cannot be completely described by usable models, pe... (read more)
Yep, fixed.
I like the addition of the pseudo-equivalences; the graph seems a lot more accurate as a representation of my views once that's done.
But it seems to me that there's something missing in terms of acceptability.
The definition of "objective robustness" I used says "aligns with the base objective" (including off-distribution). But I think this isn't an appropriate representation of your approach. Rather, "objective robustness" has to be defined something like "generalizes acceptably". Then, ideas like adversarial training and checks and balances make sense as ... (read more)
All of that made perfect sense once I thought through it, and I tend to agree with most it. I think my biggest disagreement with you is that (in your talk) you said you don't expect formal learning theory work to be relevant. I agree with your points about classical learning theory, but the alignment community has been developing basically-classical-learning-theory tools which go beyond those limitations. I'm optimistic that stuff like Vanessa's InfraBayes could help here.
Granted, there's a big question of whether that kind of thing can be competitive. (Although there could potentially be a hybrid approach.)
I've watched your talk at SERI now.
One question I have is how you hope to define a good notion of "acceptable" without a notion of intent. In your talk, you mention looking at why the model does what it does, in addition to just looking at what it does. This makes sense to me (I talk about similar things), but, it seems just about as fraught as the notion of mesa-objective:
(Meta: was this meant to be a question?)
I originally conceived of it as such, but in hindsight, it doesn't seem right.
In contrast, the generalization-focused approach puts less emphasis on the assumption that the worst catastrophes are intentional.
I don't think this is actually a con of the generalization-focused approach.
By no means did I intend it to be a con. I'll try to edit to clarify. I think it is a real pro of the generalization-focused approach that it does not rely on models having mesa-objectives (putting it in Evan's terms, there is a real poss... (read more)
Are you the historical origin of the robustness-centric approach?
Idk, probably? It's always hard for me to tell; so much of what I do is just read what other people say and make the ideas sound sane to me. But stuff I've done that's relevant:
Up to here made sense.
After here I was lost. Which propositions are valid with respect to time? How can we only allow propositions which don't get invalidated (EG if we don't know yet which will and will not be), and also, why do we want that?
... (read more)