Thanks Alex for the detailed feedback! I agree that learning a goal from the training-compatible set is a strong assumption that might not hold.
This post assumes a standard RL setup and is not intended to apply to LLMs (it's possible some version of this result may hold for fine-tuned LLMs, but that's outside the scope of this post). I can update the post to explicitly clarify this, though I was not expecting anyone to assume that this work applies to LLMs given that the post explicitly assumes standard RL and does not mention LLMs at all.
I agr...
We expect that an aligned (blue-cloud) model would have an incentive to preserve its goals, though it would need some help from us to generalize them correctly to avoid becoming a misaligned (red-cloud) model. We talk about this in more detail in Refining the Sharp Left Turn (part 2).
Just added some more detail on this to the slides. The idea is that we have various advantages over the model during the training process: we can restart the search, examine and change beliefs and goals using interpretability techniques, choose exactly what data the model sees, etc.
Thanks Alex for the detailed feedback! I have updated the post to fix these errors.
Curious if you have high-level thoughts about the post and whether these definitions have been useful in your work.
This post provides a maximally clear and simple explanation of a complex alignment scheme. I read the original "learning the prior" post a few times but found it hard to follow. I only understood how the imitative generalization scheme works after reading this post (the examples and diagrams and clear structure helped a lot).
This post helped me understand the motivation for the Finite Factored Sets work, which I was confused about for a while. The framing of agency as time travel is a great intuition pump.
I like this research agenda because it provides a rigorous framing for thinking about inductive biases for agency and gives detailed and actionable advice for making progress on this problem. I think this is one of the most useful research directions in alignment foundations since it is directly applicable to ML-based AI systems.
+1. This section follows naturally from the rest of the article, and I don't see why it's labeled as an appendix - this seems like it would unnecessarily discourage people from reading it.
It's great to hear that you have updated away from ambitious value learning towards corrigibility-like targets. It sounds like you now find it plausible that corrigibility will be a natural concept in the AI's ontology, despite it being incompatible with expected utility maximization. Does this mean that you expect we will be able to build advanced AI that doesn't become an expected utility maximizer?
I'm also curious how optimistic you are about the interpretability field being able to solve the empirical side of the abstraction problem in the next 5-10 ye...
Bah! :D It's sad to hear he's updated away from ambitions value learning towards corrigiblity-like targets. Eliezer's second-hand argument sounds circular to me; suppose that corrigibility as we'd recognize it isn't a natural abstraction - then generic AIs wouldn't use it to align child agents (instead doing something like value learning, or something even more direct), and so there wouldn't be a bunch of human-independent examples, so it wouldn't show up as a natural abstraction to those AIs.
I would consider goal generalization as a component of goal preservation, and I agree this is a significant challenge for this plan. If the model is sufficiently aligned to the goal of being helpful to humans, then I would expect it would want to get feedback about how to generalize the goals correctly when it encounters ontological shifts.
I agree that a sudden gain in capabilities can make a simulated agent undergo a sharp left turn (coming up with more effective takeover plans is a great example). My original question was about whether the simulator itself could undergo a sharp left turn. My current understanding is that a pure simulator would not become misaligned if its capabilities suddenly increase because it remains myopic, so we only have to worry about a sharp left turn for simulated agents rather than the simulator itself. Of course, in practice, language models are often fine-tune...
I would say the primary disagreement is epistemic - I think most of us would assign a low probability to a pivotal act defined as "a discrete action by a small group of people that flips the gameboard" being necessary. We also disagree on a normative level with the pivotal act framing, e.g. for reasons described in Critch's post on this topic.
Thanks Richard for this post, it was very helpful to read! Some quick comments:
Thank you for the insightful post. What do you think are the implications of the simulator framing for alignment threat models? You claim that a simulator does not exhibit instrumental convergence, which seems to imply that the simulator would not seek power or undergo a sharp left turn. The simulated agents could exhibit power-seeking behavior or rapidly generalizing capabilities or try to break out of the simulation, but this seems less concerning than the top-level model having these properties, and we might develop alignment techniques specifically tar...
Thanks Thomas for the helpful overview post! Great to hear that you found the AGI ruin opinions survey useful.
I agree with Rohin's summary of what we're working on. I would add "understanding / distilling threat models" to the list, e.g. "refining the sharp left turn" and "will capabilities generalize more".
Some corrections for your overall description of the DM alignment team:
Correct. I think that doing internal outreach to build an alignment-aware company culture and building relationships with key decision-makers can go a long way. I don't think it's possible to have complete binding power over capabilities projects anyway, since the people who want to run the project could in principle leave and start their own org.
We don't have the power to shut down projects, but we can make recommendations and provide input into decisions about projects
Thanks! For those interested in conducting similar surveys, here is a version of the spreadsheet you can copy (by request elsewhere in the comments).
Here is a spreadsheet you can copy. This one has a column for each person - if you want to sort the rows by agreement, you need to do it manually after people enter their ratings. I think it's possible to automate this but I was too lazy.
Ah, I think you intended level 6 as an OR of learning from imitation / imagined experience, while I interpreted it as an AND. I agree that humans learn from imitation on a regular basis (e.g. at school). In my version of the hierarchy, learning from imitation and imagined experience would be different levels (e.g. level 6 and 7) because the latter seems a lot harder. In your decision theory example, I think a lot more people would be able to do the imitation part than the imagined experience part.
I think some humans are at level 6 some of the time (see Humans Who Are Not Concentrating Are Not General Intelligences). I would expect that learning cognitive algorithms from imagined experience is pretty hard for many humans (e.g. examples in the Astral Codex post about conditional hypotheticals). But maybe I have a different interpretation of Level 6 than what you had in mind?
This is an interesting hierarchy! I'm wondering how to classify humans and various current ML systems along this spectrum. My quick take is that most humans are at Levels 4-5, AlphaZero is at level 5, and GPT-3 is at level 4 with the right prompting. Curious if you have specific ML examples in mind for these levels.
Thanks Eliezer for writing up this list, it's great to have these arguments in one place! Here are my quick takes (which mostly agree with Paul's response).
Section A (strategic challenges?):
Agree with #1-2 and #8. Agree with #3 in the sense that we can't iterate in dangerous domains (by definition) but not in the sense that we can't learn from experiments on easier domains (see Paul's Disagreement #1).
Mostly disagree with #4 - I think that coordination not to build AGI (at least between Western AI labs) is difficult but feasible, especially aft...
I think our proposal addresses the "simple steganography" problem, as described in "ELK prize results / First counterexample: simple steganography":
...By varying the phrasing and syntax of an answer without changing its meaning, a reporter could communicate large amounts of information to the auxiliary model. Similarly, there are many questions where a human is unsure about the answer and the reporter knows it. A reporter could encode information by answering each of these questions arbitrarily. Unless the true answers have maximum entropy, this strategy coul
I generally endorse the claims made in this post and the overall analogy. Since this post was written, there are a few more examples I can add to the categories for slow takeoff properties.
Learning from experience
Ah I see, thanks for the clarification! The 'bottle cap' (block) example is robust to removing any one cell but not robust to adding cells next to it (as mentioned in Oscar's comment). So most random perturbations that overlap with the block will probably destroy it.
Thanks for pointing this out! We realized that if we consider an empty board an optimizing system then any finite pattern is an optimizing system (because it's similarly robust to adding non-viable collections of live cells), which is not very interesting. We have updated the post to reflect this.
The 'bottle cap' example would be an optimizing system if it was robust to cells colliding / interacting with it, e.g. being hit by a glider (similarly to the eater).
Thanks Aryeh for collecting these! I added them to a new Project Ideas section in my AI Safety Resources list.
Writing this post helped clarify my understanding of the concepts in both taxonomies - the different levels of specification and types of Goodhart effects. The parts of the taxonomies that I was not sure how to match up usually corresponded to the concepts I was most confused about. For example, I initially thought that adversarial Goodhart is an emergent specification problem, but upon further reflection this didn't seem right. Looking back, I think I still endorse the mapping described in this post.
I hoped to get more comments on this post...
It was not my intention to imply that semantic structure is never needed - I was just saying that the pedestrian example does not indicate the need for semantic structure. I would generally like to minimize the use of semantic structure in impact measures, but I agree it's unlikely we can get away without it.
There are some kinds of semantic structure that the agent can learn without explicit human input, e.g. by observing how humans have arranged the world (as in the RLSP paper). I think it's plausible that agents can learn the semantic structure tha...
Looks great, thanks! Minor point: in the sparse reward case, rather than "setting the baseline to the last state in which a reward was achieved", we set the initial state of the inaction baseline to be this last rewarded state, and then apply noops from this initial state to obtain the baseline state (otherwise this would be a starting state baseline rather than an inaction baseline).
I would say that impact measures don't consider these kinds of judgments. The "doing nothing" baseline can be seen as analogous to the agent never being deployed, e.g. in the Low Impact AI paper. If the agent is never deployed, and someone dies in the meantime, then it's not the agent's responsibility and is not part of the agent's impact on the world.
I think the intuition you are describing partly arises from the choice of language: "killing someone by not doing something" vs "someone dying while you are doing nothing". The word "killing" is an active ver
...Thanks Flo for pointing this out. I agree with your reasoning for why we want the Markov property. For the second modification, we can sample a rollout from the agent policy rather than computing a penalty over all possible rollouts. For example, we could randomly choose an integer N, roll out the agent policy and the inaction policy for N steps, and then compare the resulting states. This does require a complete environment model (which does make it more complicated to apply standard RL), while inaction rollouts only require a partial environment model (p
...I don't think the pedestrian example shows a need for semantic structure. The example is intended to illustrate that an agent with the stepwise inaction baseline has no incentive to undo the delayed effect that it has set up. We want the baseline to incentivize the agent to undo any delayed effect, whether it involves hitting a pedestrian or making a pigeon fly.
The pedestrian and pigeon effects differ in the magnitude of impact, so it is the job of the deviation measure to distinguish between them and penalize the pedestrian effect more. Optionality-
...The baseline is not intended to indicate what should happen, but rather what happens by default. The role of the baseline is to filter out effects that were not caused by the agent, to avoid penalizing the agent for them (which would produce interference incentives). Explicitly specifying what should happen usually requires environment-specific human input, and impact measures generally try to avoid this.
Thanks Koen for your feedback! You make a great point about a clearer call to action for RL researchers. I think an immediate call to action is to be aware of the following:
Then a long-term call to action (if/when they are in the position to deploy an advanced AI system) is to consider the broader scope and look for general solutions to specification prob...
Thanks John for the feedback! As Oliver mentioned, the target audience is ML researchers (particularly RL researchers). The post is intended as an accessible introduction to the specification gaming problem for an ML audience that connects their perspective with a safety perspective on the problem. It is not intended to introduce novel concepts or a principled breakdown of the problem (I've made a note to clarify this in a later version of the post).
Regarding your specific questions about the breakdown, I think faithfully capturing the human concept o...
Thanks Adam for the feedback - glad you enjoyed the post!
For the Lego example, the agent received a fixed shaping reward for grasping the red brick if the bottom face was above a certain height (3cm), rather than being rewarded in proportion to the height of the bottom face. Thus, it found an easy way to collect the shaping reward by flipping the brick, while stacking it upside down on the blue brick would be a more difficult way to get the same shaping reward. The current description of the example in the post does make it sound like the reward is proportional to the height - I'll make a note to fix this in a later version of the post.
Thanks Matthew for your interesting points! I agree that it's not clear whether the pandemic is a good analogy for slow takeoff. When I was drafting the post, I started with an analogy with "medium" takeoff (on the time scale of months), but later updated towards the slow takeoff scenario being a better match. The pandemic response in 2020 (since covid became apparent as a threat) is most relevant for the medium takeoff analogy, while the general level of readiness for a coronavirus pandemic prior to 2020 is most relevant for the slow takeof...
Thanks Rohin for covering the post in the newsletter!
The summary looks great overall. I have a minor objection to the word "narrow" here: "we may fail to generalize from narrow AI systems to more general AI systems". When I talked about generalizing from less advanced AI systems, I didn't specifically mean narrow AI - what I had in mind was increasingly general AI systems we are likely to encounter on the path to AGI in a slow takeoff scenario.
For the opinion, I would agree that it's not clear how well the covid scenario mat...
Thanks Wei! I agree that improving institutions is generally very hard. In a slow takeoff scenario, there would be a new path to improving institutions using powerful (but not fully general) AI, but it's unclear how well we could expect that to work given the generally low priors.
The covid response was a minor update for me in terms of AI risk assessment - it was mildly surprising given my existing sense of institutional competence.
I certainly agree that there are problems with the stepwise inaction baseline and it's probably not the final answer for impact penalization. I should have said that the inaction counterfactual is a natural choice, rather than specifically its stepwise form. Using the inaction baseline in the driving example compares to the other driver never leaving their garage (rather than falling asleep at the wheel). Of course, the inaction baseline has other issues (like offsetting), so I think it's an open question how to design a baseline that satisfies a...
Thanks! I certainly agree that power-seeking is important to address, and I'm glad you are thinking deeply about it. However, I'm uncertain whether to expect it to be the primary avenue to impact for superintelligent systems, since I am not currently convinced that the CCC holds.
One intuition that informs this is that the non-AI global catastrophic risk scenarios that we worry about (pandemics, accidental nuclear war, extreme climate change, etc) don't rely on someone taking over the world, so a superintelligent AI could relatively easily tr...
Thank you for the clarifications! I agree it's possible I misunderstood how the proposed AUP variant is supposed to relate to the concept of impact given in the sequence. However, this is not the core of my objection. If I evaluate the agent-reward AUP proposal (as given in Equations 2-5 in this post) on its own merits, independently of the rest of the sequence, I still do not agree that this is a good impact measure.
Here are some reasons I don't endorse this approach:
1. I have an intuitive sense that defining the auxiliary reward in terms of the...
I think the previous state is a natural baseline if you are interested in the total impact on the human from all sources. If you are interested in the impact on the human that is caused by the agent (where the agent is the source), the natural choice would be the stepwise inaction baseline (comparing to the agent doing nothing).
As an example, suppose I have an unpleasant ride on a crowded bus, where person X steps on my foot and person Y steals my wallet. The total impact on me would be computed relative to the previous state before I got on the bus, whic...
I am surprised by your conclusion that the best choice of auxiliary reward is the agent's own reward. This seems like a poor instantiation of the "change in my ability to get what I want" concept of impact, i.e. change in the true human utility function. We can expect a random auxiliary reward to do a decent job covering the possible outcomes that matter for the true human utility. However, the agent's reward is usually not the true human utility, or a good approximation of it. If the agent's reward was the true human utility, ther...
Great post! I especially enjoyed the intuitive visualizations for how the heavy-tailed distributions affect the degree of overoptimization of X.
As a possibly interesting connection, your set of criteria for an alignment plan can also be thought of as criteria for selecting a model specification that approximates the ideal specification well, especially trying to ensure that the approximation error is light-tailed.