Aidan O'Gara

Research Engineering Intern at the Center for AI Safety. Helping to write the AI Safety Newsletter. Studying CS and Economics at the University of Southern California, and running an AI safety club there. Previously worked at AI Impacts and with Lionel Levine and Collin Burns on calibration for Detecting Latent Knowledge Without Supervision. 

Wiki Contributions


Great resource, thanks for sharing! As somebody who's not too deeply familiar with either mechanistic interpretability or the academic field of interpretability, I find myself confused by the fact that AI safety folks usually dismiss the large academic field of interpretability. Most academic work on ML isn't useful for safety because safety studies different problems with different kinds of systems. But unlike focusing on worst-case robustness or inner misalignment, I would expect generating human understandable explanations of what neural networks are doing to be interesting to plenty of academics, and I would think that's what the academics are trying to do. Are they just bad at generating insights? Do they look for the wrong kinds of progress, perhaps motivated by different goals? Why is the large academic field of interpretability not particularly useful for x-risk motivated AI safety?

These professors all have a lot of published papers in academic conferences. It’s probably a bit frustrating to not have their work summarized, and then be asked to explain their own work, when all of their work is published already. I would start by looking at their Google Scholar pages, followed by personal websites and maybe Twitter. One caveat would be that papers probably don’t have full explanations of the x-risk motivation or applications of the work, but that’s reading between the lines that AI safety people should be able to do themselves.

Ah okay. Are there theoretical reasons to think that neurons with lower variance in activation would be better candidates for pruning? I guess it would be that the effect on those nodes is similar across different datapoints, so they can be pruned and their effects will be replicated by the rest of the network.

“…nodes with the smallest standard deviation.” Does this mean nodes whose weights have the lowest absolute values?