Adam Shimi

Full time independent deconfusion researcher ( in AI Alignment. (Also PhD in the theory of distributed computing).

If you're interested by some research ideas that you see in my posts, know that I keep private docs with the most compressed version of my deconfusion ideas in the process of getting feedback. I can give you access if you PM me!

A list of topics I'm currently doing deconfusion on:

  • Goal-directedness for discussing AI Risk
  • Myopic Decision Theories for dealing with deception (with Evan Hubinger)
  • Universality for many alignment ideas of Paul Christiano
  • Deconfusion itself to get better at it
  • Models of Languages Models to clarify the alignment issues surrounding them.


Reviews for the Alignment Forum
AI Alignment Unwrapped
Deconfusing Goal-Directedness
Toying With Goal-Directedness

Wiki Contributions


[AN #157]: Measuring misalignment in the technology underlying Copilot

Exactly. I'm mostly arguing that I don't think the case for the agent situation is as clear cut as I've seen some people defend it, which doesn't mean it's not possibly true.

[AN #157]: Measuring misalignment in the technology underlying Copilot

Sorry for the delay in answering, I was a bit busy.

I am making a claim that for the purposes of alignment of capable systems, you do want to talk about "motivation". So to the extent GPT-N / Codex-N doesn't have a motivation, but is existentially risky, I'm claiming that you want to give it a motivation. I wouldn't say this with high confidence but it is my best guess for now

That makes some sense, but I do find the "motivationless" state interesting from an alignment point of view. Because if it has no motivation, it also doesn't have a motivation to do all the things we don't want. We thus get some corrigibility by default, because we can change its motivation just by changing the prompt.

I think Gwern is using "agent" in a different way than you are ¯\_(ツ)_/¯ 

I don't think Gwern and I would differ much in our predictions about what GPT-3 is going to do in new circumstances. (He'd probably be more specific than me just because he's worked with it a lot more than I have.)

Agreed that there's not much difference when predicting GPT-3. But it's because we're at the place in the scaling where Gwern (AFAIK) describe the LM as an agent very good at predicting-agent. By definition it will not do anything different from a simulator, since its "goal" literally encode all of its behavior.

Yet there is a difference when scaling. If Gwern is right (or if LM because more like what he's describing as they get bigger), then we end up with a single agent which we probably shouldn't trust because of all our many worries with alignment. On the other hand, if scaled up LM are non-agentic/simulator-like, then they would stay motivationless, and there would be at least the possibility to use them to help alignment research for example, by trying to simulate non-agenty systems.

It doesn't seem like whether something is obvious or not should determine whether it is misaligned -- it's obvious that a very superintelligent paperclip maximizer would be bad, but clearly we should still call that misaligned.

Fair enough.

I think that's primarily to emphasize why it is difficult to avoid specification gaming, not because those are the only examples of misalignment.

Yeah, you're probably right.

DeepMind: Generally capable agents emerge from open-ended play

Actually, I think you're right. I always thought that MuZero was one and the same system for every game, but the Nature paper describes it as an architecture that can be applied to learn different games. I'd like a confirmation from someone who actually studied it more, but it looks like MuZero indeed isn't the same system for each game.

DeepMind: Generally capable agents emerge from open-ended play

Could you use this technique to e.g. train the same agent to do well on chess and go?

If I don't misunderstand your question, this is something they already did with MuZero.

[AN #157]: Measuring misalignment in the technology underlying Copilot

Sorry for ascribing you beliefs you don't have. I guess I'm just used to people here and in other places assuming goals and agency in language models, and also some of your choices of words sounded very goal-directed/intentional stance to me.

Maybe you're objecting to the "motivated" part of that sentence? But I was saying that it isn't motivated to help us, not that it is motivated to do something else.

Sure, but don't you agree that it's a very confusing use of the term? Like, if I say GPT-3 isn't trying to kill me, I'm not saying it is trying to kill anyone, but I'm sort of implying that it's the right framing to talk about it. In this case, the "motivated" part did triggered me, because it implied that the right framing is to think about what Codex wants, which I don't think is right (and apparently you agree).

(Also the fact that gwern, which ascribe agency to GPT-3, quoted specifically this part in his comment is another evidence that you're implying agency for different people)

Maybe you're objecting to words like "know" and "capable"? But those don't seem to imply agency/goals; it seems reasonable to say that Google Maps knows about traffic patterns and is capable of predicting route times.

Agreed with you there.

As an aside, this was Codex rather than GPT-3, though I'd say the same thing for both.

True, but I don't feel like there is a significant difference between Codex and GPT-3 in terms of size or training to warrant different conclusions with regard to ascribing goals/agency.

I don't care what it is trained for; I care whether it solves my problem. Are you telling me that you wouldn't count any of the reward misspecification examples as misalignment? After all, those agents were trained to optimize the reward, not to analyze what you meant and fix your reward.

First, I think I interpreted "misalignment" here to mean "inner misalignment", hence my answer. I also agree that all examples in Victoria's doc are showing misalignment. That being said, I still think there is a difference with the specification gaming stuff. 

Maybe the real reason it feels weird for me to call this behavior of Codex misalignment is that it is so obvious? Almost all specification gaming examples are subtle, or tricky, or exploiting bugs. They're things that I would expect a human to fail to find, even given the precise loss and training environment. Whereas I expect any human to complete buggy code with buggy code once you explain to them that Codex looks for the most probable next token based on all the code.

But there doesn't seem to be a real disagreement between us: I agree that GPT-3/Codex seem fundamentally unable to get really good at the "Chatbot task" I described above, which is what I gather you mean by "solving my problem".

(By the way, I have an old post about formulating this task that we want GPT-3 to solve. It was written before I actually studied GPT-3 but that holds decently well I think. I also did some experiments on GPT-3 with EleutherAI people on whether bigger models get better at answering more variations of the prompt for the same task.)

[AN #157]: Measuring misalignment in the technology underlying Copilot

Rohin's opinion: I really liked the experiment demonstrating misalignment, as it seems like it accurately captures the aspects that we expect to see with existentially risky misaligned AI systems: they will “know” how to do the thing we want, they simply won’t be “motivated” to actually do it.

I think that this is a very good example where the paper (based on your summary) and your opinion assumes some sort of higher agency/goals in GPT-3 than what I feel we have evidence for. Notably, there are IMO pretty good arguments (mostly by people affiliated with EleutherAI, I'm pushing them to post on the AF) that GPT-3 seems to work more like a simulator of language-producing processes (for lack of a better word), than as an agent trying to predict the next token.

Like what you write here:

They also probe the model for bad behavior, including misalignment. In this context, they define misalignment as a case where the user wants A, but the model outputs B, and the model is both capable of outputting A and capable of distinguishing between cases where the user wants A and the user wants B.

For a simulator-like model, this is not misalignment, this is intended behavior. It is trained to find the most probable continuation, not to analyze what you meant and solve your problem. In that sense, GPT-3 fails the "chatbot task": for a lot of the great things it's great at doing, you have to handcraft (or constrain) the prompts to make -- it won't find out precisely what you mean.

Or put it differently: people which are good at making GPT-3 do what they want have learned to not use it like a smart agent figuring out what you really mean, but more like a "prompt continuation engine". You can obviously say "it's an agent that does really care about the context", but I doesn't look like it adds anything to the picture, and I have the gut feeling that being agenty makes it harder to do that task (as you need a very un-goal-like goal).

(I think this points out to what you mention in that comment, about approval-directedness being significantly less goal-directed: if GPT-3 is agenty, it looks quite a lot like a sort of approval-directed agent.)

paulfchristiano's Shortform

Ok, so you optimize the circuit both for speed and for small loss on human answers/comparisons, hoping that it generalizes to more questions while not being complex enough to be deceptive. Is that what you mean?

paulfchristiano's Shortform

This hope does require the local oversight process to be epistemically competitive with the AI, in the sense that e.g. if the AI understands something subtle about the environment dynamics then the oversight process also needs to understand that. And that's what we are trying to do with all of this business about training AIs to answer questions honestly. The point is just that you don't have to clear up any of the ambiguity about what the human wants, you just have to be able to detect someone tampering with deliberation. (And the operationalization of tampering doesn't have to be so complex.)

So you want a sort of partial universality sufficient to bootstrap the process locally (while not requiring the understanding of our values in fine details), giving us enough time for a deliberation that would epistemically dominate the AI in a global sense (and get our values right)?

If that's about right, then I agree that having this would make your proposal work, but I still don't know how to get it. I need to read your previous posts on reading questions honestly. 

paulfchristiano's Shortform

Here's my starting proposal:

  • We quantify the human's local preferences by asking "Look at the person you actually became. How happy are you with that person? Quantitatively, how much of your value was lost by replacing yourself with that person?" This gives us a loss on a scale from 0% (perfect idealization, losing nothing) to 100% (where all of the value is gone). Most of the values will be exceptionally small, especially if we look at a short period like an hour.
  • Eventually once the human becomes wise enough to totally epistemically dominate the original AI, they can assign a score to the AI's actions. To make life simple for now let's ignore negative outcomes and just describe value as a scalar from 0% (barren universe) to 100% (all of the universe is used in an optimal way). Or we might use this "final scale" in a different way (e.g. to evaluate the AI's actions rather than the actually assessing outcomes, assigning high scores to corrigible and efficient behavior and somehow quantifying deviations from that ideal).
  • The utility is the product of all of these numbers.

If I follow correctly, the first step requires the humans to evaluate the output of narrow value learning, until this output becomes good enough to become universal with regard to the original AI and supervise it? I'm not sure I get why the AI wouldn't be incentivized to temper with the narrow value learning, à la Predict-o-matic? Depending on certain details, (like maybe the indescribable hellworld hypothesis), maybe the AI can introduce changes to the partial imitations/deliberations that end up hidden and compounding until the imitations epistemically dominates the AI, and then it ask it to do simple stuff.

paulfchristiano's Shortform

One aspect of this proposal which I don't know how to do is evaluation the answers of the question-answerer. That looks too me very related to the deconfusion of universality that we discussed a few months ago, and without an answer to this, I feel like I don't even know how to run this silly approach.

Load More