CEO at Redwood Research.
AI safety is a highly collaborative field--almost all the points I make were either explained to me by someone else, or developed in conversation with other people. I'm saying this here because it would feel repetitive to say "these ideas were developed in collaboration with various people" in all my comments, but I want to have it on the record that the ideas I present were almost entirely not developed by me in isolation.
IMO the main argument for focusing on scheming risk is that scheming is the main plausible source of catastrophic risk from the first AIs that either pose substantial misalignment risk or that are extremely useful (as I discuss here). These other problems all seem like they require the models to be way smarter in order for them to be a big problem. Though as I said here, I'm excited for work on some non-scheming misalignment risks.
Another effect here is that the AI companies often don't want to be as reckless as I am, e.g. letting agents run amok on my machines.
Of course AI company employees have the most hands-on experience
FWIW I am not sure this is right--most AI company employees work on things other than "try to get as much work as possible from current AI systems, and understand the trajectory of how useful the AIs will be". E.g. I think I have more personal experience with running AI agents than people at AI companies who don't actively work on AI agents.
There are some people at AI companies who work on AI agents that use non-public models, and those people are ahead of the curve. But that's a minority.
Work that I’ve done on techniques for mitigating misalignment risk often makes a number of conservative assumptions about the capabilities of the AIs we’re trying to control. (E.g. the original AI control paper, Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats, How to prevent collusion when using untrusted models to monitor each other.) For example:
But I don’t think situations where all these assumptions hold are the majority of risk from AI misalignment. Other sources of risk from misalignment (broadly construed):
What do you mean by "easy" here?
I think that how you talk about the questions being “easy”, and the associated stuff about how you think the baseline human measurements are weak, is somewhat inconsistent with you being worse than the model.
Ok, so sounds like given 15-25 mins per problem (and maybe with 10 mins per problem), you get 80% correct. This is worse than o3, which scores 87.7%. Maybe you'd do better on a larger sample: perhaps you got unlucky (extremely plausible given the small sample size) or the extra bit of time would help (though it sounds like you tried to use more time here and that didn't help). Fwiw, my guess from the topics of those questions is that you actually got easier questions than average from that set.
I continue to think these LLMs will probably outperform (you with 30 mins). Unfortunately, the measurement is quite expensive, so I'm sympathetic to you not wanting to get to ground here. If you believe that you can beat them given just 5-10 minutes, that would be easier to measure. I'm very happy to bet here.
I think that even if it turns out you're a bit better than LLMs at this task, we should note that it's pretty impressive that they're competitive with you given 30 minutes!
So I still think your original post is pretty misleading [ETA: with respect to how it claims GPQA is really easy].
I think the models would beat you by more at FrontierMath.
@johnswentworth Do you agree with me that modern LLMs probably outperform (you with internet access and 30 minutes) on GPQA diamond? I personally think this somewhat contradicts the narrative of your comment if so.
Yes, I'd be way worse off without internet access.
This problem seems important (e.g. it's my last bullet here). It seems to me much easier to handle, because if this problem is present, we ought to be able to detect its presence by using AIs to do research on other subjects that we already know a lot about (e.g. the string theory analogy here). Scheming is the only reason why the model would try to make it hard for us to notice that this problem is present.