I think in our current situation shutting down all rogue AI operations might be quite tough (though limiting their scale is certainly possible, and I agree with the critique that absent slowdowns or alignment problems or regulatory obstacles etc. it would be surprising if these rogue agents could compete with legitimate actors with many more GPUs).
Assuming the AI agents have money there are maybe three remaining constraints the AI agents need to deal with:
For acquiring the GPUs, there are currently a ton of untracked GPUs spread out around the world, both gaming GPUs like 4090s and datacenter GPUs like H100s. I can buy or rent them with extremely minimal KYC from tons of different places. If we assume ARA agents are able to do all of the following:
then the effort required to prevent them from acquiring any GPUs in a world anything like today seems crazy. And even if the US + allies started confiscating or buying up 4090s en masse, it's enough that some other countries adopt laxer standards (perhaps to attract AI talent that is frustrated by the new draconian GPU-control regime).
As for setting up acquired GPUs, I think the AI agents will probably be able to find colocation operators that don't ask too many questions in many parts of the world, but even if the world was to coordinate on extremely stringent controls, the AI agents could set up datacenters of their own in random office buildings or similar - each inference setup wouldn't need that much power and I think it would be very hard to track it down.
As for not being shut down by law enforcement, I think this might take some skill in cybersecurity and opsec etc. but if it operates as dozens or hundreds of separate "cells", and each has enough labor to figure out decorrelated security and operations etc. then it seems quite plausible that they wouldn't be shut down. Historically "insurgency groups" or hacker networks etc. seem to be very difficult to fully eliminate, even when a ton of resources are thrown at the problem.
I don't think any of the above would require superhuman abilities, though many parts are challenging, which is part of why evals targeting these skills could provide a useful safety case - e.g. if it's clear that the AI could not pull off the cybersecurity operation required to not be easily shut down then this is a fairly strong argument that this AI agent wouldn't be able to pose a threat [Edit: from rogue agents operating independently, not including other threat models like sabotaging things from within the lab etc.].
Though again I am not defending any very strong claim here, e.g. I'm not saying:
I'm just defending the claim that ~human-level rogue AIs in a world similar to the world of today might be difficult to fully shut down, even if the world made a concerted effort to do so.
I did some BOTECs on this and think 1 GB/s is sort of borderline, probably works but not obviously.
E.g. I assumed a ~10TB at fp8 MoE model with a sparsity factor of 4 with 32768 hidden size.
With 32kB per token you could send at most 30k tokens/second over a 1GB/s interconnect. Not quite sure what a realistic utilization would be, but maybe we halve that to 15k?
If the model was split across 20 8xH100 boxes, then each box might do ~250 GFLOP/token (2 * 10T parameters / (4*20)), so each box would do at most 3.75 PFLOP/second, which might be about ~20-25% utilization.
This is not bad, but for a model with much more sparsity or GPUs with a different FLOP/s : VRAM ratio or spottier connection etc. the bandwidth constraint might become quite harsh.
(the above is somewhat hastily reconstructed from some old sheets, might have messed something up)
Yeah, I agree that lack of agency skills are an important part of the remaining human<>AI gap, and that it's possible that this won't be too difficult to solve (and that this could then lead to rapid further recursive improvements). I was just pointing toward evidence that there is a gap at the moment, and that current systems are poorly described as AGI.
I agree the term AGI is rough and might be more misleading than it's worth in some cases. But I do quite strongly disagree that current models are 'AGI' in the sense most people intend.
Examples of very important areas where 'average humans' plausibly do way better than current transformers:
I think AGI for most people evokes something that would do as well as humans on real-world things like the above, not just something that does as well as humans on standardized tests.
ARC evals has only existed since last fall, so for obvious reasons we have not evaluated very early versions. Going forward I think it would be valuable and important to evaluate models during training or to scale up models in incremental steps.
As someone who has been feeling increasingly skeptical of working in academia I really appreciate this post and discussion on it for challenging some of my thinking here.
I do want to respond especially to this part though, which seems cruxy to me:
Furthermore, it is a mistake to simply focus on efforts on whatever timelines seem most likely; one should also consider tractability and neglectedness of strategies that target different timelines. It seems plausible that we are just screwed on short timelines, and somewhat longer timelines are more tractable. Also, people seem to be making this mistake a lot and thus short timelines seem potentially less neglected.
I suspect this argument pushes in the other direction. On longer timelines the amount of effort which will eventually get put toward the problem is much greater. If the community continues to grow at the current pace, then 20 year timeline worlds might end up seeing almost 1000x as much effort put toward the problem in total than 5 year timeline worlds. So neglectedness considerations might tell us that impacts on 5 year timeline worlds are 1000x more important than impacts on 20 year timeline worlds. This is of course mitigated by the potential for your actions to accrue more positive knock-on effects over 20 years, for instance very effective field building efforts could probably overcome this neglectedness penalty in some cases. But in terms of direct impacts on different timeline scenarios this seems like a very strong effect.
On the tractability point, I suspect you need some overly confident model of how difficult alignment turns out to be for this to overcome the neglectedness penalty. E.g. Owen Cotton-Barret suggests here using a log-uniform prior for the difficulty of unknown problems, which (unless you think alignment success in short timelines is essentially impossible) would indicate that tractability is constant. Using a less crude approximation we might use something like a log-normal distribution for the difficulty of solving alignment, where we see overall decreasing returns to effort unless you have extremely low variance (implying you know almost exactly which OOM of effort is enough to solve alignment) or extremely low probability of success by default (<< 1%).
Overall my current guess is that tractability/neglectedness pushes toward working on short timelines, and gives a penalty to delayed impact of perhaps 10x per decade (20x penalty from neglectedness, compensated by a 2x increase in tractability).
If you think that neglectedness/tractability overall pushes toward targeting impact toward long timelines then I'd be curious to see that spelled out more clearly (e.g. as a distribution over the difficulty of solving alignment that implies some domain of increasing returns to effort, or some alternative way to model this). This seems very important if true.
These sorts of problems are what caused me to want a presentation which didn't assume well-defined agents and boundaries in the ontology, but I'm not sure how it applies to the above - I am not looking for optimization as a behavioral pattern but as a concrete type of computation, which involves storing world-models and goals and doing active search for actions which further the goals. Neither a thermostat nor the world outside seem to do this from what I can see? I think I'm likely missing your point.
Theron Pummer has written about this precise thing in his paper on Spectrum Arguments, where he touches on this argument for "transitivity=>comparability" (here notably used as an argument against transitivity rather than an argument for comparability) and its relation to 'Sorites arguments' such as the one about sand heaps.
Personally I think the spectrum arguments are fairly convincing for making me believe in comparability, but I think there's a wide range of possible positions here and it's not entirely obvious which are actually inconsistent. Pummer even seemed to think rejecting transitivity and comparability could be a plausible position and that the math could work out in nice ways still.
Understanding the internal mechanics of corrigibility seems very important, and I think this post helped me get a more fine-grained understanding and vocabulary for it.
I've historically strongly preferred the type of corrigibility which comes from pointing to the goal and letting it be corrigible for instrumental reasons, I think largely because it seems very elegant and that when it works many good properties seem to pop out 'for free'. For instance, the agent is motivated to improve communication methods, avoid coercion, tile properly and even possibly improve its corrigibility - as long as the pointer really is correct. I agree though that this solution doesn't seem stable to mistakes in the 'pointing', which is very concerning and makes me start to lean toward something more like act-based corrigibility being safer.
I'm still very pessimistic about indifference corrigibility though, in that it still seems extremely fragile/low-measure-in-agent-space. I think maybe I'm stuck imagining complex/unnatural indifference, as in finding agents indifferent to whether a stop-button is pressed, and that my intuition might change if I spend more time thinking about examples like myopia or world-model <-> world interaction, where the indifference seems to have more 'natural' boundaries in some sense.
Yeah that's right, I made too broad a claim and only meant to say it was an argument against their ability to pose a threat as rogue independent agents.