Posts

Sorted by New

Wiki Contributions

Comments

I'm not sure if this comment goes best here, or in the "Against Strong Bayesianism" post. But I'll put it here, because this is fresher.

I think it's important to be careful when you're taking limits. 

I think it's true that "The policy that would result from a naive implementation of Solomonoff induction followed by expected utility maximization, given infinite computing power, is the ideal policy, in that there is no rational process (even using arbitrarily much computing power) that leads to a policy that beats it." 

But say somebody offered you an arbitrarily large-and-fast, but still finite, computer. That is to say, you're allowed to ask for a google-plex operations per second and a google-plex RAM, or even Graham's number of each, but you have to name a number then live with it. The above statement does NOT mean that the program you should run on that hyper-computer is a naive implementation of Solomonoff induction. You would still want to use the known tricks for improving the efficiency of Bayesian approximations; that is, things like MCMC, SMC, efficient neural proposal distributions with importance-weighted sampling, efficient pruning of simulations to just the parts that are relevant for predicting input (which, in turn, includes all kinds of causality logic), smart allocation of computational resources between different modes and fallbacks, etc. Such tricks — even just the ones we have already discovered — look a lot more like "intelligence" than naive Solomonoff induction does. Even if, when appropriately combined, their limit as computation goes to infinity is the same as the limit of Solomonoff induction as computation goes to infinity

In other words, saying "the limit as amount-of-computation X goes to infinity of program A, strictly beats program B with amount Y of finite computation, for any B and Y"; or even "the limit as amount-of-computation X goes to infinity of program A, is as good or better than the limit as amount-of-computation Y goes to infinity of program B, for any B" ... is true, but not very surprising or important, because it absolutely does not imply that "as computation X goes to infinity, program A with X resources beats program B with X resources, for any B".