AI ALIGNMENT FORUM
AF

1680
Marcello Herreshoff
Ω4001
Message
Dialogue
Subscribe

Posts

Sorted by New

Wikitag Contributions

Comments

Sorted by
Newest
No posts to display.
0Marcello's Shortform
5y
0
Formal Open Problem in Decision Theory
Marcello9y30

From discussions I had with Sam, Scott, and Jack:

To solve the problem, it would suffice to find a reflexive domain X with a retract onto [0,1].

This is because if you have a reflexive domain X, that is, an X with a continuous surjective map f::X→XX, and A is a retract of X, then there's also a continuous surjective map g::X→AX.

Proof: If A is a retract of X then we have a retraction r::X→A and a section s::A→X with r∘s=1A. Construct g(x):=r∘f(x). To show that g is a surjection consider an arbitrary q∈AX. Thus, s∘q::X→X. Since f is a surjection there must be some x with f(x)=s∘q. It follows that g(x)=r∘f(x)=r∘s∘q=q. Since q was arbitrary, g is also a surjection.

Reply
Formal Open Problem in Decision Theory
Marcello9y10

"Self-Reference and Fixed Points: A Discussion and an Extension of Lawvere's Theorem" by Jorge Soto-Andrade and Francisco J. Varela seems like a potentially relevant result. In particular, they prove a converse Lawvere result in the category of posets (though they mention doing this for [0,1] in an unsolved problem.) I'm currently reading through this and related papers with an eye to adapting their construction to [0,1] (I think you can't just use it straight-forwardly because even though you can build a reflexive domain with a retract to an arbitrary poset, the paper uses a different notion of continuity for posets.)

Reply
Burch's Law
16 years ago
(+581)