Sorted by New

Wiki Contributions


This is great. One nuance: This implies that behavioral RL fine-tuning evals are strictly less robust than behavioral I.I.D. fine-tuning evals, and that as such they would only be used for tasks that you know how to evaluate but not generate. But it seems to me that there are circumstances in which the RL-based evals could be more robust at testing capabilities, namely in cases where it's hard for a model to complete a task by the same means that humans tend to complete it, but where RL can find a shortcut that allows it to complete the task in another way. Is that right or am I misunderstanding something here?

For example, if we wanted to test whether a particular model was capable of getting 3 million points in the game of Qbert within 8 hours of gameplay time, and we fine-tuned on examples of humans doing the same, it might not be able to: achieving this in the way an expert human does might require mastering numerous difficult-to-learn subskills. But an RL fine-tuning eval might find the bug discovered by Canonical ES, illustrating the capability without needing the subskills that humans lean on.

Irving's team's terminology has been "behavioural alignment" for the green box -