Rohin Shah

Research Scientist at DeepMind. Creator of the Alignment Newsletter. http://rohinshah.com/

Sequences

Value Learning
Alignment Newsletter

Wiki Contributions

Comments

Sounds plausible, but why does this differentially impact the generalizing algorithm over the memorizing algorithm?

Perhaps under normal circumstances both are learned so fast that you just don't notice that one is slower than the other, and this slows both of them down enough that you can see the difference?

Daniel Filan: But I would’ve guessed that there wouldn’t be a significant complexity difference between the frequencies. I guess there’s a complexity difference in how many frequencies you use.

Vikrant Varma: Yes. That’s one of the differences: how many you use and their relative strength and so on. Yeah, I’m not really sure. I think this is a question we pick out as a thing we would like to see future work on.

My pet hypothesis here is that (a) by default, the network uses whichever frequencies were highest at initialization (for which there is significant circumstantial evidence) and (b) the amount of interference differs significantly based on which frequencies you use (which in turn changes the quality of the logits holding parameter norm fixed, and thus changes efficiency).

In principle this can be tested by randomly sampling frequency sets, simulating the level of interference you'd get, using that to estimate the efficiency + critical dataset size for that grokking circuit. This gives you a predicted distribution over critical dataset sizes, which you could compare against the actual distribution.

Tbc there are other hypotheses too, e.g. perhaps different frequency sets are easier / harder to implement by the neural network architecture.

This suggestion seems less expressive than (but similar in spirit to) the "rescale & shift" baseline we compare to in Figure 9. The rescale & shift baseline is sufficient to resolve shrinkage, but it doesn't capture all the benefits of Gated SAEs.

The core point is that L1 regularization adds lots of biases, of which shrinkage is just one example, so you want to localize the effect of L1 as much as possible. In our setup L1 applies to , so you might think of  as "tainted", and want to use it as little as possible. The only thing you really need L1 for is to deter the model from setting too many features active, i.e. you need it to apply to one bit per feature (whether that feature is on / off). The Heaviside step function makes sure we are extracting just that one bit, and relying on  for everything else.

Thinking on this a bit more, this might actually reflect a general issue with the way we think about feature shrinkage; namely, that whenever there is a nonzero angle between two vectors of the same length, the best way to make either vector close to the other will be by shrinking it.

This was actually the key motivation for building this metric in the first place, instead of just looking at the ratio . Looking at the  that would optimize the reconstruction loss ensures that we're capturing only bias from the L1 regularization, and not capturing the "inherent" need to shrink the vector given these nonzero angles. (In particular, if we computed  for Gated SAEs, I expect that would be below 1.)

I think the main thing we got wrong is that we accidentally treated  as though it were . To the extent that was the main mistake, I think it explains why our results still look how we expected them to -- usually  is going to be close to 1 (and should be almost exactly 1 if shrinkage is solved), so in practice the error introduced from this mistake is going to be extremely small.

We're going to take a closer look at this tomorrow, check everything more carefully, and post an update after doing that. I think it's probably worth waiting for that -- I expect we'll provide much more detailed derivations that make everything a lot clearer.

Possibly I'm missing something, but if you don't have , then the only gradients to  and  come from  (the binarizing Heaviside activation function kills gradients from ), and so  would be always non-positive to get perfect zero sparsity loss. (That is, if you only optimize for L1 sparsity, the obvious solution is "none of the features are active".)

(You could use a smooth activation function as the gate, e.g. an element-wise sigmoid, and then you could just stick with  from the beginning of Section 3.2.2.)

Is it accurate to summarize the headline result as follows?

  • Train a Transformer to predict next tokens on a distribution generated from an HMM.
  • One optimal predictor for this data would be to maintain a belief over which of the three HMM states we are in, and perform Bayesian updating on each new token. That is, it maintains .
  • Key result: A linear probe on the residual stream is able to reconstruct .

(I don't know what Computational Mechanics or MSPs are so this could be totally off.)

EDIT: Looks like yes. From this post:

Part of what this all illustrates is that the fractal shape is kinda… baked into any Bayesian-ish system tracking the hidden state of the Markov model. So in some sense, it’s not very surprising to find it linearly embedded in activations of a residual stream; all that really means is that the probabilities for each hidden state are linearly represented in the residual stream.

I feel like a lot of these arguments could be pretty easily made of individual AI safety researchers. E.g.

Misaligned Incentives

In much the same way that AI systems may have perverse incentives, so do the [AI safety researchers]. They are [humans]. They need to make money, [feed themselves, and attract partners]. [Redacted and redacted even just got married.] This type of accountability to [personal] interests is not perfectly in line with doing what is good for human interests. Moreover, [AI safety researchers are often] technocrats whose values and demographics do not represent humanity particularly well. Optimizing for the goals that the [AI safety researchers] have is not the same thing as optimizing for human welfare. Goodhart’s Law applies. 

I feel pretty similarly about most of the other arguments in this post.

Tbc I think there are plenty of things one could reasonably critique scaling labs about, I just think the argumentation in this post is by and large off the mark, and implies a standard that if actually taken literally would be a similarly damning critique of the alignment community.

(Conflict of interest notice: I work at Google DeepMind.)

Sounds reasonable, though idk what you think realistic values of N are (my wild guess with hardly any thought is 15 minutes - 1 day).

EDIT: Tbc in the 1 day case I'm imagining that most of the time goes towards running the experiment -- it's more a claim about what experiments we want to run. If we just talk about the time to write the code and launch the experiment I'm thinking of N in the range of 5 minutes to 1 hour.

Cool, that all roughly makes sense to me :)

I was certainly imagining at least some amount of multi-tasking (e.g. 4 projects at once each of which runs 8x faster). This doesn't feel that crazy to me, I already do a moderate amount of multi-tasking.

Multi-tasking where you are responsible for the entire design of the project? (Designing the algorithm, choosing an experimental setting and associated metrics, knowing the related work, interpreting the results of the experiments, figuring out what the next experiment should be, ...)

Suppose today I gave you a device where you put in moderately detailed instructions for experiments, and the device returns the results[1] with N minutes of latency and infinite throughput. Do you think you can spend 1 working day using this device to produce the same output as 4 copies of yourself working in parallel for a week (and continue to do that for months, after you've exhausted low-hanging fruit)?

... Having written this hypothetical out, I am finding it more plausible than before, at least for small enough N, though it still feels quite hard at e.g. N = 60.

  1. ^

    The experiments can't use too much compute. No solving the halting problem.

I agree it helps to run experiments at small scales first, but I'd be pretty surprised if that helped to the point of enabling a 30x speedup -- that means that the AI labor allows you get 30x improvement in compute needed beyond what would be done by default by humans (though the 30x can include e.g. improving utilization, it's not limited just to making individual experiments take less time).

I think the most plausible case for your position would be that the compute costs for ML research scale much less than quadratically with the size of the pretrained model, e.g. maybe (1) finetuning starts taking fewer data points as model size increases (sample efficiency improves with model capability), and so finetuning runs become a rounding error on compute, and (2) the vast majority of ML research progress involves nothing more expensive than finetuning runs. (Though in this world you have to wonder why we keep training bigger models instead of just investing solely in better finetuning the current biggest model.)

Another thing that occurred to me is that latency starts looking like another major bottleneck. Currently it seems feasible to make a paper's worth of progress in ~6 months. With a 30x speedup, you now have to do that in 6 days. At that scale, introducing additional latency via experiments at small scales is a huge cost. 

(I'm assuming here that the ideas and overall workflow are still managed by human researchers, since your hypothetical said that the AIs are just going from high level ideas to implemented experiments. If you have fully automated AI researchers then they don't need to optimize latency as hard; they can instead get 30x speedup by having 30x as many researchers working but still producing a paper every 6 months.)

(Another possibility is that human ML researchers get really good at multi-tasking, and so e.g. they have 5 paper-equivalents at any given time, each of which takes 30 calendar days to complete. But I don't believe that (most) human ML researchers are that good at multitasking on research ideas, and there isn't that much time for them to learn.)

It also seems hard for the human researchers to have ideas good enough to turn into paper-equivalents every 6 days. Also hard for those researchers to keep on top of the literature well enough to be proposing stuff that actually makes progress rather than duplicating existing work they weren't aware of, even given AI tools that help with understanding the literature.

Further, the current scaling laws imply huge inference availablity if huge amounts of compute are used for training.

Tbc the fact that running your automated ML implementers takes compute was a side point; I'd be making the same claims even if running the AIs was magically free.

Though even at a billion token-equivalents per second it seems plausible to me that your automated ML experiment implementers end up being a significant fraction of that compute. It depends quite significantly on how capable a single forward pass is, e.g. can the AI just generate an entire human-level pull request autoregressively (i.e. producing each token of the PR one at a time, without going back to fix errors) vs does it do similar things as humans (write tests and code, test, debug, eventually submit) vs. does it do way more iteration and error correction than humans (in parallel to avoid crazy high latency), do we use best-of-N sampling or similar tricks to improve quality of generations, etc.

Load More