Phylactery Decision Theory

Another problem with this is that it isn't clear how to form the hypothesis "I have control over X".

You don't. I'm using talk about control sometimes to describe what the agent is doing from the outside, but the hypothesis it believes all have a form like "The variables such and such will be as if they were set by BDT given such and such inputs".

One problem with this is that it doesn't actually rank hypotheses by which is best (in expected utility terms), just how much control is implied.

For the first setup, where its trying to learn what it has control over, thats true. But you can use any ordering of hypothesis for the descent, so we can just take "how good that world is" as our ordering. This is very fragile of course. If theres uncountably many great but unachievable worlds, we fail, and in any case we are paying for all this with performance on "ordinary learning". If this were running in a non-episodic environment, we would have to find a balance between having the probability of hypothesis decline according to goodness, and avoiding the "optimistic humean troll" hypothesis by considering complexity as well. It really seems like I ought to take "the active ingredient" of this method out, if I knew how.

Reflective Bayesianism

From my perspective, Radical Probabilism is a gateway drug.

This post seemed to be praising the virtue of returning to the lower-assumption state. So I argued that in the example given, it took more than knocking out assumptions to get the benefit.

So, while I agree, I really don't think it's cruxy. 

It wasn't meant to be. I agree that logical inductors seem to de facto implement a Virtuous Epistemic Process, with attendent properties, whether or not they understand that. I just tend to bring up any interesting-seeming thoughts that are triggered during conversation and could perhaps do better at indicating that. Whether its fine to set it aside provisionally depends on where you want to go from here.

Reflective Bayesianism

Either way, we've made assumptions which tell us which Dutch Books are valid. We can then check what follows.

Ok. I suppose my point could then be made as "#2 type approaches aren't very useful, because they assume something thats no easier than what they provide".

I think this understates the importance of the Dutch-book idea to the actual construction of the logical induction algorithm. 

Well, you certainly know more about that than me. Where did the criterion come from in your view?

This part seems entirely addressed by logical induction, to me.

Quite possibly. I wanted to separate what work is done by radicalizing probabilism in general, vs logical induction specifically. That said, I'm not sure logical inductors properly have beliefs about their own (in the de dicto sense) future beliefs. It doesn't know "its" source code (though it knows that such code is a possible program) or even that it is being run with the full intuitive meaning of that, so it has no way of doing that. Rather, it would at some point think about the source code that we know is its, and come to believe that that program gives reliable results - but only in the same way in which it comes to trust other logical inductors. It seems like a version of this in the logical setting.

By "knowing where they are", I mean strategies that avoid getting dutch-booked without doing anything that looks like "looking for dutch books against me". One example of that would be The Process That Believes Everything Is Independent And Therefore Never Updates, but thats a trivial stupidity.

Reflective Bayesianism

What is actually left of Bayesianism after Radical Probabilism? Your original post on it was partially explaining logical induction, and introduced assumptions from that in much the same way as you describe here. But without that, there doesn't seem to be a whole lot there. The idea is that all that matters is resistance to dutch books, and for a dutch book to be fair the bookie must not have an epistemic advantage over the agent. Said that way, it depends on some notion of "what the agent could have known at the time", and giving a coherent account of this would require solving epistemology in general. So we avoid this problem by instead taking "what the agent actually knew (believed) at the time", which is a subset and so also fair. But this doesn't do any work, it just offloads it to agent design. 

For example with logical induction, we know that it can't be dutch booked by any polynomial-time trader. Why do we think that criterion is important? Because we think its realistic for an agent to in the limit know anything you can figure out in polynomial time. And we think that because we have an algorithm that does it. Ok, but what intellectual progress does the dutch book argument make here? We had to first find out what one can realistically know, and got logical induction, from which we could make the poly-time criterion. So now we know its fair to judge agents by that criterion, so we should find one, which fortunately we already have. But we could also just not have thought about dutch books at all, and just tried to figure out what one could realistically know, and what would we have lost? Making the dutch book here seems like a spandrel in thinking style.

As a side note, I reread Radical Probabilism for this, and everything in the "Other Rationality Properties" section seems pretty shaky to me. Both the proofs of both convergence and calibration as written depend on logical induction - or else, the assumption that the agent would know if its not convergent/calibrated, in which case could orthodoxy not achieve the same? You acknowledge this for convergence in a comment but also hint at another proof. But if radical probabilism is a generalization of orthodox bayesianism, then how can it have guarantees that the latter doesn't?

For the conservation of expected evidence, note that the proof here involves a bet on what the agents future beliefs will be. This is a fragile construction: you need to make sure the agent can't troll the bookie, without assuming the accessability of the structures you want to establish. It also assumes the agent has models of itself in its hypothesis space. And even in the weaker forms, the result seems unrealistic. There is the problem with psychedelics that the "virtuous epistemic process" is supposed to address, but this is something that the formalism allows for with a free parameter, not something it solves. The radical probabilist trusts the sequence of , but it doesn't say anything about where they come from. You can now assert that it can't be identified with particular physical processes, but that just leaves a big questionmark for bridging laws. If you want to check if there are dutch books against your virtuous epistemic process, you have to be able to identify its future members. Now I can't exclude that some process could avoid all dutch books against it without knowing where they are (and without being some trivial stupidity), but it seems like a pretty heavy demand.

Troll Bridge

If you're reasoning using PA, you'll hold open the possibility that PA is inconsistent, but you won't hold open the possibility that . You believe the world is consistent. You're just not so sure about PA.

Do you? This sounds like PA is not actually the logic you're using. Which is realistic for a human. But if PA is indeed inconsistent, and you don't have some further-out system to think in, then what is the difference to you between "PA is inconsistent" and "the world is inconsistent"? In both cases you just believe everything and its negation. This also goes with what I said about thought and perception not being separated in this model, which stand in for "logic" and "the world". So I suppose that is where you would look when trying to fix this.

If you mean "hold off on fully believing things which contradict the possibility", then obviously the agent would hold off on fully believing PA itself.

You do fully believe in PA. But it might be that you also believe its negation. Obviously this doesn't go well with probabilistic approaches.

Troll Bridge

If I'm using PA, I can prove that .

Sure, thats always true. But sometimes its also true that . So unless you believe PA is consistent, you need to hold open the possibility that the ball will both (stop and continue) and (do at most one of those). But of course you can also prove that it will do at most one of those. And so on. I'm not very confident whats right, ordinary imagination is probably just misleading here.

It seems particularly absurd that, in some sense, the reason you think that is just because you think that.

The facts about what you think are theorems of PA. Judging from the outside: clearly if an agent with this source code crosses the bridge, then PA is inconsistent. So, I think the agent is reasoning correctly about the kind of agent it is. I agree that the outcome looks bad - but its not clear if the agent is "doing something wrong". For comparison, if we built an agent that would only act if it could be sure its logic is consistent, it wouldn't do anything - but its not doing anything wrong. Its looking for logical certainty, and there isn't any, but thats not its fault.

Troll Bridge

Heres what I imagine the agent saying in its defense:

Yes, of course I can control the consistency of PA, just like everything else can. For example, imagine that you're using PA and you see a ball rolling. And then in the next moment, you see the ball stopping and you also see the ball continuing to roll. Then obviously PA is inconsistent.

Now you might think this is dumb, because its impossible to see that. But why do you think its impossible? Only because its inconsistent. But if you're using PA, you must believe PA really might be inconsistent, so you can't believe its impossible. Remember also that in our agent design theres no clear boundary between perceiving and thinking that you could use to avoid that.

So whether PA is inconsistent depends on the ball: if it stopped and continued to roll, that would make PA inconsistent. Similarly, if my source code implies that I won't do something, and then I do it, I make PA inconsistent. You just don't really believe that your logic might be inconsistent. If you want me to do something else, give me a new theory of logic.

I'm not sure I believe the agent about this, but its not obviously worse than the interpretation given here.

Limiting Causality by Complexity Class

The first sentence of your first paragraph appears to appeal to experiment, while the first sentence of your second paragraph seems to boil down to "Classically, X causes Y if there is a significant statistical connection twixt X and Y."  

No. "Dependence" in that second sentence does not mean causation. It just means statistical dependence. The definition of dependence is important because an intervention must be statistically independent from things "before" the intervention.

None of these appear to involve intervention.

These are methods of causal inference. I'm talking about what causality is. As in, what is the difference between a mere correlation, and causation? The difference is that the second is robust to intervention: if X causes Y, then if I decide to do X, even in circumstances different from those where I've observed it before, Y will happen. If X only correlates with Y, it might not.

Limiting Causality by Complexity Class

Pearl's answer, from IIRC Chapter 7 of Causality, which I find 80% satisfying, is about using external knowledge about repeatability to consider a system in isolation. The same principle gets applied whenever a researcher tries to shield an experiment from outside interference.

This is actually a good illustration of what I mean. You can't shield an experiment from outside influence entirely, not even in principle, because its you doing the shielding, and your activity is caused by the rest of the world. If you decide to only look at a part of the world, one that doesn't contain you, thats not a problem - but thats just assuming that that route of influence doesn't matter. Similarly, "knowledge about repeatability" is causal knowledge. This answer just tells you how to gain causal knowledge of parts of the world, given that you already have some causal knowledge about the whole. So you can't apply it to the entire world. This is why I say it doesn't go well with embedded agency.

The second is about limiting allowed interventions.

No? What I'm limiting is what dependencies we're considering. And it seems that what you say after this is about singular causality, and I'm not really concerned with that. Having a causal web is sufficient for decision theory.

Limiting Causality by Complexity Class

What I had in mind was increasing precision of Y.

Load More