I operate by Crocker's rules.

I won't deliberately, derisively spread something just because you tried to point out an infohazard.

Wiki Contributions



löb = □ (□ A → A) → □ A
□löb = □ (□ (□ A → A) → □ A)
□löb -> löb:
  löb premises □ (□ A → A).
  By internal necessitation, □ (□ (□ A → A)).
  By □löb, □ (□ A).
  By löb's premise, □ A.

The recursive self-improvement isn't necessarily human-out-of-the-loop: If an AGI comes up with simpler math, everything gets easier.

It wouldn't just guess the next line of the proof, it'd guess the next conjecture. It could translate our math papers into proofs that compile, then write libraries that reduce code duplication. I expect canonical solutions to our confusions to fall out of a good enough such library.

Oh, I wasn't expecting you to have addressed the issue! 10.2.4 says L wouldn't be S if it were calculated from projected actions instead of given actions. How so? Mightn't it predict the given actions correctly?

You're right on all counts in your last paragraph.

it is very interpretable to humans

Misunderstanding: I expect we can't construct a counterfactual planner because we can't pick out the compute core in the black-box learned model.

And my Eliezer's problem with counterfactual planning is that the plan may start by unleashing a dozen memetic, biological, technological, magical, political and/or untyped existential hazards on the world which then may not even be coordinated correctly when one of your safeguards takes out one of the resulting silicon entities.

If you don't wish to reply to Eliezer, I'm an other and also ask what incoherence allows what corrigibility. I expect counterfactual planning to fail for want of basic interpretability. It would also coherently plan about the planning world - my Eliezer says we might as well equivalently assume superintelligent musings about agency to drive human readers mad.

Someone needs to check if we can use ML to guess activations in one set of neurons from activations in another set of neurons. The losses would give straightforward estimates of such statistical quantities as mutual information. Generating inputs that have the same activations in a set of neurons illustrates what the set of neurons does. I might do this myself if nobody else does.

Suppose the bridge is safe iff there's a proof that the bridge is safe. Then you would forbid the reasoning "Suppose I cross. I must have proven it's safe. Then it's safe, and I get 10. Let's cross.", which seems sane enough in the face of Löb.

Translating to a tree of natural language descriptions and back lets you

  1. use different instances of GPT at each step, so that any coded messages would have to rely on the common training set rather than shared internals.
  2. do a random subset of the tasks yourself, so that any subversion of the target system would have to be based on subtle biases, perhaps with a small number of outright lies that it hopes we don't implement manually, rather than the description being fabricated from whole cloth.

Having the thing write papers is merely an existence proof of embedded agency being irrelevant except for deconfusion.

Intelligent agents causally responsible for your existence.

What do you mean you can think of this, I told this to you :D

Suppose instead of a timeline with probabilistic events, the coalition experiences the full tree of all possible futures - but we translate everything to preserve behavior. Then beliefs encode which timelines each member cares about, and bets trade influence (governance tokens) between timelines.

Load More