Vivek Hebbar

Wiki Contributions

Comments

When you describe the "emailing protein sequences -> nanotech" route, are you imagining an AGI with computers on which it can run code (like simulations)?  Or do you claim that the AGI could design the protein sequences without writing simulations, by simply thinking about it "in its head"?

It would still be interesting to know whether you were surprised by GPT-4's capabilities (if you have played with it enough to have a good take)

POV: I'm in an ancestral environment, and I (somehow) only care about the rewarding feeling of eating bread. I only care about the nice feeling which comes from having sex, or watching the birth of my son, or being gaining power in the tribe. I don't care about the real-world status of my actual son, although I might have strictly instrumental heuristics about e.g. how to keep him safe and well-fed in certain situations, as cognitive shortcuts for getting reward (but not as terminal values). 

Would such a person sacrifice themselves for their children (in situations where doing so would be a fitness advantage)?

Any idea why "cheese Euclidean distance to top-right corner" is so important?  It's surprising to me because the convolutional layers should apply the same filter everywhere.

Agreed.  To give a concrete toy example:  Suppose that Luigi always outputs "A", and Waluigi is {50% A, 50% B}.  If the prior is {50% luigi, 50% waluigi}, each "A" outputted is a 2:1 update towards Luigi.  The probability of "B" keeps dropping, and the probability of ever seeing a "B" asymptotes to 50% (as it must).

This is the case for perfect predictors, but there could be some argument about particular kinds of imperfect predictors which supports the claim in the post.

In section 3.7 of the paper, it seems like the descriptions ("6 in 5", etc) are inconsistent across the image, the caption, and the paragraph before them.  What are the correct labels?  (And maybe fix the paper if these are typos?)

In ML terms, nearly-all the informational work of learning what “apple” means must be performed by unsupervised learning, not supervised learning. Otherwise the number of examples required would be far too large to match toddlers’ actual performance.

I'd guess the vast majority of the work (relative to the max-entropy baseline) is done by the inductive bias.

As I understand Vivek's framework, human value shards explain away the need to posit alignment to an idealized utility function. A person is not a bunch of crude-sounding subshards (e.g. "If food nearby and hunger>15, then be more likely to go to food") and then also a sophisticated utility function (e.g. something like CEV). It's shards all the way down, and all the way up.[10] 

This read to me like you were saying "In Vivek's framework, value shards explain away .." and I was confused.  I now think you mean "My take on Vivek's is that value shards explain away ..".  Maybe reword for clarity?

(Might have a substantive reply later)

Makes perfect sense, thanks!

"Well, what if I take the variables that I'm given in a Pearlian problem and I just forget that structure? I can just take the product of all of these variables that I'm given, and consider the space of all partitions on that product of variables that I'm given; and each one of those partitions will be its own variable.

How can a partition be a variable?  Should it be "part" instead?

Load More