Vojtech Kovarik

My original background is in mathematics (analysis, topology, Banach spaces) and game theory (imperfect information games). Nowadays, I do AI alignment research (mostly systemic risks, sometimes pondering about "consequentionalist reasoning").


Formalising Catastrophic Goodhart

Wiki Contributions


I want to flag that the overall tone of the post is in tension with the dislacimer that you are "not putting forward a positive argument for alignment being easy".

To hint at what I mean, consider this claim:

Undo the update from the “counting argument”, however, and the probability of scheming plummets substantially.

I think this claim is only valid if you are in a situation such as "your probability of scheming was >95%, and this was based basically only on this particular version of the 'counting argument' ". That is, if you somehow thought that we had a very detailed argument for scheming (AI X-risk, etc), and this was it --- then yes, you should strongly update.
But in contrast, my take is more like: This whole AI stuff is a huge mess, and the best we have is intuitions. And sometimes people try to formalise these intuitions, and those attempts generally all suck. (Which doesn't mean our intuitions cannot be more or less detailed. It's just that even the detailed ones are not anywhere close to being rigorous.) EG, for me personally, the vague intuition that "scheming is instrumental for a large class of goals" makes a huge contribution to my beliefs (of "something between 10% and 99% on alignment being hard"), while the particular version of the 'counting argument' that you describe makes basically no contribution. (And vague intuitions about simplicity priors contributing non-trivially.) So undoing that particular update does ~nothing.

I do acknowledge that this view suggests that the AI-risk debate should basically be debating the question: "So, we don't have any rigorous arguments about AI risk being real or not, and we won't have them for quite a while yet. Should we be super-careful about it, just in case?". But I do think that is appropriate.

Quick reaction:

  • I didn't want to use the ">1 billion people" formulation, because that is compatible with scenarios where a catastrophe or an accident happens, but we still end up controling the future in the end.
  • I didn't want to use "existential risk", because that includes scenarios where humanity survives but has net-negative effects (say, bad versions of Age of Em or humanity spreading factory farming across the stars).
  • And for the purpose of this sequence, I wanted to look at the narrower class of scenarios where a single misaligned AI/optimiser/whatever takes over and does its thing. Which probably includes getting rid of literally everyone, modulo some important (but probably not decision-relevant?) questions about anthropics and negotiating with aliens.

I think literal extinction from AI is a somewhat odd outcome to study as it heavily depends on difficult to reason about properties of the world (e.g. the probability that Aliens would trade substantial sums of resources for emulated human minds and the way acausal trade works in practice).

What would you suggest instead? Something like [50% chance the AI kills > 99% of people]?

(My current take is that for a majority reader, sticking to "literal extinction" is the better tradeoff between avoiding confusion/verbosity and accuracy. But perhaps it deserves at least a footnote or some other qualification.)

I think literal extinction from AI is a somewhat odd outcome to study as it heavily depends on difficult to reason about properties of the world (e.g. the probability that Aliens would trade substantial sums of resources for emulated human minds and the way acausal trade works in practice).

That seems fair. For what it's worth, I think the ideas described in the sequence are not sensitive to what you choose here. The point isn't as much to figure out whether the particular arguments go through or not, but to ask which properties must your model have, if you want to be able to evaluate those arguments rigorously.

(For context: My initial reaction to the post was that this is misrepresenting the MIRI-position-as-I-understood-it. And I am one of the people who strongly endorse the view that "it was never about getting the AI to predict human preferences". So when I later saw Yudkowsky's comment and your reaction, it seemed perhaps useful to share my view.)

It seems like you think that human preferences are only being "predicted" by GPT-4, and not "preferred." If so, why do you think that?

My reaction to this is that: Actually, current LLMs do care about our preferences, and about their guardrails. It was never about getting some AI to care about our preferences. It is about getting powerful AIs to robustly care about our preferences. Where by "robustly" includes things like (i) not caring about other things as well (e.g., prediction accuracy), (ii) generalising correctly (e.g., not just maximising human approval), and (iii) not breaking down when we increase the amount of optimisation pressure a lot (e.g., will it still work once we hook it into future-AutoGPT-that-actually-works and have it run for a long time?).

Some examples of what would cause me to update are: If we could make LLMs not jailbreakable without relying on additional filters on input or output.

Nitpicky comment / edit request: The circle inversion figure was quite confusing to me. Perhaps add a note to it saying that solid green maps onto solid blue, red maps onto itself, and dotted green maps onto dotted blue. (Rather than colours mapping to each other, which is what I intuitively expected.)

Fun example: The evolution of offensive words seems relevant here. IE, we frown upon using currently-offensive words, so we end up expressing ourselves using some other words. And over time, we realise that those other words are (primarily used as) Doppelgangers, and mark them as offensive as well.

E.g. Living in large groups such that it’s hard for a predator to focus on any particular individual; a zebra’s stripes.

Off-topic, but: Does anybody have a reference for this, or a better example? This is the first time I have heard this theory about zebras.

Two points that seem relevant here:

  1. To what extent are "things like LLMs" and "things like AutoGPT" very different creatures, with the latter sometimes behaving like a unitary agent?
  2. Assuming that the distinction in (1) matters, how often do we expect to see AutoGPT-like things?

(At the moment, both of these questions seem open.)

This made me think of "lawyer-speak", and other jargons.

More generally, this seems to be a function of learning speed and the number of interactions on the one hand, and the frequency with which you interact with other groups on the other. (In this case, the question would be how often do you need to be understandable to humans, or to systems that need to be understandable to humans, etc.)

Load More