James Payor

AI Alignment at MIRI


Sorted by New


AI Alignment Open Thread August 2019

It wasn't meant as a reply to a particular thing - mainly I'm flagging this as an AI-risk analogy I like.

On that theme, one thing "we don't know if the nukes will ignite the atmosphere" has in common with AI-risk is that the risk is from reaching new configurations (e.g. temperatures of the sort you get out of a nuclear bomb inside the Earth's atmosphere) that we don't have experience with. Which is an entirely different question than "what happens with the nukes after we don't ignite the atmosphere in a test explosion".

I like thinking about coordination from this viewpoint.

AI Alignment Open Thread August 2019

There is a nuclear analog for accident risk. A quote from Richard Hamming:

Shortly before the first field test (you realize that no small scale experiment can be done—either you have a critical mass or you do not), a man asked me to check some arithmetic he had done, and I agreed, thinking to fob it off on some subordinate. When I asked what it was, he said, "It is the probability that the test bomb will ignite the whole atmosphere." I decided I would check it myself! The next day when he came for the answers I remarked to him, "The arithmetic was apparently correct but I do not know about the formulas for the capture cross sections for oxygen and nitrogen—after all, there could be no experiments at the needed energy levels." He replied, like a physicist talking to a mathematician, that he wanted me to check the arithmetic not the physics, and left. I said to myself, "What have you done, Hamming, you are involved in risking all of life that is known in the Universe, and you do not know much of an essential part?" I was pacing up and down the corridor when a friend asked me what was bothering me. I told him. His reply was, "Never mind, Hamming, no one will ever blame you."


Coherent behaviour in the real world is an incoherent concept
First problem with this argument: there are no coherence theories saying that an agent needs to maintain the same utility function over time.

This seems pretty false to me. If you can predict in advance that some future you will be optimizing for something else, you could trade with future "you" and merge utility functions, which seems strictly better than not. (Side note: I'm pretty annoyed with all the use of "there's no coherence theorem for X" in this post.)

As a separate note, the "further out" your goal is and the more that your actions are for instrumental value, the more it should look like world 1 in which agents are valuing abstract properties of world states, and the less we should observe preferences over trajectories to reach said states.

(This is a reason in my mind to prefer the approval-directed-agent frame, in which humans get to inject preferences that are more about trajectories.)

Diagonalization Fixed Point Exercises

Q7 (Python):

Y = lambda s: eval(s)(s)
Y('lambda s: print("Y = lambda s: eval(s)(s)\\nY({s!r})")')

Q8 (Python):

Not sure about the interpretation of this one. Here's a way to have it work for any fixed (python function) f:

f = 'lambda s: "\\n".join(s.splitlines()[::-1])'

go = 'lambda s: print(eval(f)(eval(s)(s)))'

eval(go)('lambda src: f"f = {f!r}\\ngo = {go!r}\\neval(go)({src!r})"')