AI strategy & governance. ailabwatch.org. ailabwatch.substack.com.
Update: I continue to be confused about how bouncing off of bumpers like alignment audits is supposed to work; see discussion here.
I want to distinguish (1) finding undesired behaviors or goals from (2) catching actual attempts to subvert safety techniques or attack the company. I claim the posts you cite are about (2). I agree with those posts that (2) would be very helpful. I don't think that's what alignment auditing work is aiming at.[1] (And I think lower-hanging fruit for (2) is improving monitoring during deployment plus some behavioral testing in (fake) high-stakes situations.)
Yes, of course, sorry. I should have said: I think detecting them is (pretty easy and) far from sufficient. Indeed, we have detected them (sandbagging only somewhat) and yes this gives you something to try interventions on but, like, nobody knows how to solve e.g. alignment faking. I feel good about model organisms work but [pessimistic/uneasy/something] about the bouncing off alignment audits vibe.
Edit: maybe ideally I would criticize specific work as not-a-priority. I don’t have specific work to criticize right now (besides interp on the margin), but I don't really know what work has been motivated by "bouncing off bumpers" or "alignment auditing." For now, I’ll observe that the vibe is worrying to me and I worry about the focus on showing that a model is safe relative to improving safety.[1] And, like, I haven't heard a story for how alignment auditing will solve [alignment faking or sandbagging or whatever], besides maybe the undesired behavior derives from bad data or reward functions or whatever and it's just feasible to trace the undesired behavior back to that and fix it (this sounds false but I don't have good intuitions here and would mostly defer if non-Anthropic people were optimistic).
The vibes—at least from some Anthropic safety people, at least historically—have been like if we can't show safety then we can just not deploy. In the unrushed regime, don't deploy is a great affordance. In the rushed regime, where you're the safest developer and another developer will deploy a more dangerous model 2 months later, it's not good. Given that we're in the rushed regime, more effort should go toward decreasing danger relative to measuring danger.
iiuc, Anthropic's plan for averting misalignment risk is bouncing off bumpers like alignment audits.[1] This doesn't make much sense to me.
(Reminder: Anthropic is very optimistic about interp, but Interpretability Will Not Reliably Find Deceptive AI.)
(Reminder: the below is all Anthropic's RSP says about risks from misalignment)
(For more, see my websites AI Lab Watch and AI Safety Claims.)
Anthropic doesn't have an official plan. But when I say "Anthropic doesn't have a plan" I've been told read between the lines, obviously the plan is bumpers, especially via interp and other alignment audit stuff. Clarification on Anthropic's planning is welcome.
So what?
I don't know. Maybe dangerous capability evals don't really matter. The usual story for them is that they inform companies about risks so the companies can respond appropriately. Good evals are better than nothing, but I don't expect companies' eval results to affect their safeguards or training/deployment decisions much in practice. (I think companies' safety frameworks are quite weak or at least vague — a topic for another blogpost.) Maybe evals are helpful for informing other actors, like government, but I don't really see it.
I don't have a particular conclusion. I'm making aisafetyclaims.org because evals are a crucial part of companies' preparations to be safe when models might have very dangerous capabilities, but I noticed that the companies are doing and interpreting evals poorly (and are being misleading about this, and aren't getting better), and some experts are aware of this but nobody else has written it up yet.
I agree people often aren't careful about this.
Anthropic says
During our evaluations we noticed that Claude 3.7 Sonnet occasionally resorts to special-casing in order to pass test cases in agentic coding environments . . . . This undesirable special-casing behavior emerged as a result of "reward hacking" during reinforcement learning training.
Similarly OpenAI suggests that cheating behavior is due to RL.
tl;dr: Keep your promises to AIs; it's fine to do stuff like teaching them false facts or misleading them about their situation during testing and deployment; but if you wanna do cheap stuff to cause them to know that they might [have been taught false facts / be being tested / be being misled during deployment], sure, go for it.
Disclaimer: maybe more like explaining my position than justifying my position.
Sometimes we really want to deceive AIs (or at least make them uncertain about their situation). E.g.:
(Similarly sometimes we want to give the AIs reflexive urges to avoid doing extremely bad things [and to do extremely good things, like whistleblow on themselves if they do something suspicious].)
(3-4 don't require deception, just making the AIs uncertain about their situation; it would work similarly well if we added "this might be a test" to all prompts, during training and deployment. 1-2 and 5 require narrow deception, but it would still work if you added "we might have told or trained you to believe false things and this might be a test" to all prompts.)
Often people suggest that we should avoid deceiving AIs, because (A) having a reputation of honesty could enable some kinds of trade with misaligned AIs and/or (B) it's directly unethical.
On (A), I want to distinguish breaking actual promises from just testing the AIs or misleading them for safety. If the AIs think you will break promises of the form "we'll give you 1% of our share of the lightcone if you [do useful work / point out vulnerabilities rather than exploiting them / etc.]," that's bad. If the AIs believe you might have taught them false facts or might be testing them, that seems fine, doesn't interfere with making deals at all. Just clarify that you never mislead them about actual promises.
On (B), in cases like 1-5, when I imagine myself in the AI's position I think I wouldn't care about whether the message was added to the prompt. But if adding "we might have told or trained you to believe false things and this might be a test" to all prompts makes you feel better, or the AI asks for it when you explain the situation, sure, it's low-stakes. (Or not literally adding it to the prompt, especially if we can't ensure it would stay added to the prompt in rogue deployments, but training the AI so it is aware of this.[1]) (And fwiw, I think in the AI's position: 3-4 I basically wouldn't mind; 1-2 and 5 I might be slightly sad about but would totally get and not be mad about; teaching AIs false facts in the mid-late 2020s seems super reasonable from behind the veil of ignorance given my/humanity's epistemic state.)
Recent context: discussion on "Modifying LLM Beliefs with Synthetic Document Finetuning."
My guess is that this training is fine/cheap and preserves almost all of the safety benefits — we're counting on the AI not knowing what false things it believes, not to be unaware that it's been taught false facts. Adding stuff to prompts might be worse because not-seeing-that would signal successful-rogue-deployment.
A crucial step is bouncing off the bumpers.
If we encounter a warning sign that represents reasonably clear evidence that some common practice will lead to danger, the next step is to try to infer the proximate cause. These efforts need not result in a comprehensive theory of all of the misalignment risk factors that arose in the training run, but it should give us some signal about what sort of response would treat the cause of the misalignment rather than simply masking the first symptoms.
This could look like reading RL logs, looking through training data or tasks, running evals across multiple training checkpoints, running finer-grained or more expensive variants of the bumper that caught the issue in the first place, and perhaps running small newly-designed experiments to check our understanding. Mechanistic interpretability tools and related training-data attribution tools like influence functions in particular can give us clues as to what data was most responsible for the behavior. In easy cases, the change might be as simple as redesigning the reward function for some automatically-graded RL environment or removing a tranche of poorly-labeled human data.
Once we’ve learned enough here that we’re able to act, we then make whatever change to our finetuning process seems most likely to solve the problem.
I'm surprised[1] that you're optimistic about this. I would have guessed that concerning-audit-results don't help you solve the problem much. Like if you catch sandbagging that doesn't let you solve sandbagging. I get that you can patch simple obvious stuff—"redesigning the reward function for some automatically-graded RL environment or removing a tranche of poorly-labeled human data"—but mostly I don't know how to tell a story where concerning-audit-results are very helpful.
(I'm actually ignorant on this topic; "surprised" mostly isn't a euphemism for "very skeptical.")
Some of my friends are signal-boosting this new article: 60 U.K. Lawmakers Accuse Google of Breaking AI Safety Pledge. See also the open letter. I don't feel good about this critique or the implicit ask.