or we need to figure out some way to access the inaccessible information that “A* leads to lots of human flourishing.”
To help check my understanding, your previously described proposal to access this "inaccessible" information involves building corrigible AI via iterated amplification, then using that AI to capture "flexible influence over the future", right? Have you become more pessimistic about this proposal, or are you just explaining some existing doubts? Can you explain in more detail why you think it may fail?
(I'll try to guess.) Is it that corrigibility is about short-term preferences-on-reflection and short-term preferences-on-reflection may themselves be inaccessible information?
I can pay inaccessible costs for an accessible gain — for example leaking critical information, or alienating an important ally, or going into debt, or making short-sighted tradeoffs. Moreover, if there are other actors in the world, they can try to get me to make bad tradeoffs by hiding real costs.
This seems similar to what I wrote in an earlier thread: "What if the user fails to realize that a certain kind of resource is valuable? (By “resources” we’re talking about things that include more than just physical resources, like control of strategic locations, useful technologies that might require long lead times to develop, reputations, etc., right?)" At the time I thought you proposed to solve this problem by using the user's "preferences-on-reflection", which presumably would correctly value all resources/costs. So again is it just that "preferences-on-reflection" may itself be inaccessible?
Overall I don’t think it’s very plausible that amplification or debate can be a scalable AI alignment solution on their own, mostly for the kinds of reasons discussed in this post — we will eventually run into some inaccessible knowledge that is never produced by amplification, and so never winds up in your distilled agents.
Besides the above, can you give some more examples of (what you think may be) "inaccessible knowledge that is never produced by amplification"?
(I guess an overall feedback is that in most of the post you discuss inaccessible information without talking about amplification, and then quickly talk about amplification in the last section, but it's not easy to see how the two ideas relate without more explanations and examples.)
To help check my understanding, your previously described proposal to access this "inaccessible" information involves building corrigible AI via iterated amplification, then using that AI to capture "flexible influence over the future", right? Have you become more pessimistic about this proposal, or are you just explaining some existing doubts? Can you explain in more detail why you think it may fail?
(I'll try to guess.) Is it that corrigibility is about short-term preferences-on-reflection and short-term preferences-on-reflection may themselves be inaccessible information?
I think that's right. The difficulty is that short-term preferences-on-reflection depend on "how good is this situation actually?" and that judgment is inaccessible.
This post doesn't reflect me becoming more pessimistic about iterated amplification or alignment overall. This post is part of the effort to pin down the hard cases for iterated amplification, which I suspect will also be hard cases for other alignment strategies (for the kinds of reasons discussed in this post).
This seems similar to what I wrote in an earlier thread: "What if the user fails to realize that a certain kind of resource is valuable?
Yeah, I think that's similar. I'm including this as part of the alignment problem---if unaligned AIs realize that a certain kind of resource is valuable but aligned AIs don't realize that, or can't integrate it with knowledge about what the users want (well enough to do strategy stealing) then we've failed to build competitive aligned AI.
(By “resources” we’re talking about things that include more than just physical resources, like control of strategic locations, useful technologies that might require long lead times to develop, reputations, etc., right?)"
Yes.
At the time I thought you proposed to solve this problem by using the user's "preferences-on-reflection", which presumably would correctly value all resources/costs. So again is it just that "preferences-on-reflection" may itself be inaccessible?
Yes.
Besides the above, can you give some more examples of (what you think may be) "inaccessible knowledge that is never produced by amplification"?
If we are using iterated amplification to try to train a system that answers the question "What action will put me in the best position to flourish over the long term?" then in some sense the only inaccessible information that matters is "To what extent will this action put me in a good position to flourish?" That information is potentially inaccessible because it depends on the kind of inaccessible information described in this post---what technologies are valuable? what's the political situation? am I being manipulated? is my physical environment being manipulated?---and so forth. That information in turn is potentially inaccessible because it may depend on internal features of models that are only validated by trial and error, for which we can't elicit the correct answer either by directly checking it nor by transfer from other accessible features of the model.
(I might be misunderstanding your question.)
(I guess an overall feedback is that in most of the post you discuss inaccessible information without talking about amplification, and then quickly talk about amplification in the last section, but it's not easy to see how the two ideas relate without more explanations and examples.)
By default I don't expect to give enough explanations or examples :) My next step in this direction will be thinking through possible approaches for eliciting inaccessible information, which I may write about but which I don't expect to be significantly more useful than this. I'm not that motivated to invest a ton of time in writing about these issues clearly because I think it's fairly likely that my understanding will change substantially with more thinking, and I think this isn't a natural kind of "checkpoint" to try to explain clearly. Like most posts on my blog, you should probably regard this primarily as a record of Paul's thinking. (Though it would be great if it could be useful as explanation as a side effect, and I'm willing to put in a some time to try to make it useful as explanation, just not the amount of time that I expect would be required.)
(My next steps on exposition will be trying to better explain more fundamental aspects of my view.)
This post defines and discusses an informal notion of "inaccessible information" in AI.
AIs are expected to acquire all sorts of knowledge about the world in the course of their training, including knowledge only tangentially related to their training objective. The author proposes to classify this knowledge into "accessible" and "inaccessible" information. In my own words, information inside an AI is "accessible" when there is a straightforward way to set up a training protocol that will incentivize the AI to reliably and accurately communicate this information to the user. Otherwise, it is "inaccessible". This distinction is meaningful because, by default, the inner representation of all information is opaque (e.g. weights in an ANN) and notoriously hard to make sense of by human operators.
The primary importance of this concept is in the analysis of competitiveness between aligned and unaligned AIs. This is because it might be that aligned plans are inaccessible (since it's hard to reliably specify whether a plan aligned) whereas certain unaligned plans are accessible (e.g. because it's comparatively easy to specify whether a plan produces many paperclips). The author doesn't mention this, but I think that there is also another reason, namely that unaligned subagents effectively have access to information that is inaccessible to us.
More concretely, approaches such as IDA and debate rely on leveraging certain accessible information: for debate it is "what would convince a human judge", and for IDA-of-imitation it is "what would a human come up with if they think about this problem for such and such time". But, this accessible information is only a proxy for what we care about ("how to achieve our goals"). Assuming this proxy doesn't produce goodharting, we are still left with a performance penalty for this indirection. That is, a paperclip maximizer reasons directly about "how to maximize paperclips", leveraging all information it has, whereas an IDA-of-imitation only reasons about "how to achieve human goals" via the information it has about "what would a human come up with".
The author seems to believe that finding a method to "unlock" this inaccessible information will solve the competitiveness problem. On the other hand I am more pessimistic. I consider it likely that there is an inherent tradeoff between safety and performance, and therefore any such method would either expose another attack vector or introduce another performance penalty.
The author himself says that "MIRI’s approach to this problem could be described as despair + hope you can find some other way to produce powerful AI". I think that my approach is despair(ish) + a different hope. Namely, we need to ensure a sufficient period during which (i) aligned superhuman AIs are deployed (ii) no unaligned transformative AIs are deployed, and leverage it to set-up a defense system. That said, I think the concept of "inaccessible information" is interesting and thinking about it might well produce important progress in alignment.
Planned summary for the Alignment Newsletter:
One way to think about the problem of AI alignment is that we only know how to train models on information that is _accessible_ to us, but we want models that leverage _inaccessible_ information.
Information is accessible if it can be checked directly, or if an ML model would successfully transfer to provide the information when trained on some other accessible information. (An example of the latter would be if we trained a system to predict what happens in a day, and it successfully transfers to predicting what happens in a month.) Otherwise, the information is inaccessible: for example, “what Alice is thinking” is (at least currently) inaccessible, while “what Alice will say” is accessible. The post has several other examples.
Note that while an ML model may not directly say exactly what Alice is thinking, if we train it to predict what Alice will say, it will probably have some internal model of what Alice is thinking, since that is useful for predicting what Alice will say. It is nonetheless inaccessible because there’s no obvious way of extracting this information from the model. While we could train the model to also output “what Alice is thinking”, this would have to be training for “a consistent and plausible answer to what Alice is thinking”, since we don’t have the ground truth answer. This could incentivize bad policies that figure out what we would most believe, rather than reporting the truth.
The argument for risk is then as follows: we care about inaccessible information (e.g. we care about what people _actually_ experience, rather than what they _say_ they experience) but can’t easily make AI systems that optimize for it. However, AI systems will be able to infer and use inaccessible information, and would outcompete ones that don’t. AI systems will be able to plan using such inaccessible information for at least some goals. Then, the AI systems that plan using the inaccessible information could eventually control most resources. Key quote: “The key asymmetry working against us is that optimizing flourishing appears to require a particular quantity to be accessible, while danger just requires anything to be accessible.”
The post then goes on to list some possible angles of attack on this problem. Iterated amplification can be thought of as addressing gaps in speed, size, experience, algorithmic sophistication etc. between the agents we train and ourselves, which can limit what inaccessible information our agents can have that we won’t. However, it seems likely that amplification will eventually run up against some inaccessible information that will never be produced. As a result, this could be a “hard core” of alignment.
Planned opinion:
I think the idea of inaccessible information is an important one, but it’s one that feels deceptively hard to reason about. For example, I often think about solving alignment by approximating “what a human would say after thinking for a long time”; this is effectively a claim that human reasoning transfers well when iterated over long periods of time, and “what a human would say” is at least somewhat accessible. Regardless, it seems reasonably likely that AI systems will inherit the same property of transferability that I attribute to human reasoning, in which case the argument for risk applies primarily because the AI system might apply its reasoning towards a different goal than the ones we care about, which leads us back to the <@intent alignment@>(@Clarifying "AI Alignment"@) formulation.
This response views this post as a fairly general argument against black box optimization, where we only look at input-output behavior, as then we can’t use inaccessible information. It suggests that we need to understand how the AI system works, rather than relying on search, to avoid these problems.
Maybe I'm missing something, but I don't understand why you're considering the output of the simplest model that provides some checkable information to be accessible. It seems to me like that simplest model could very well be implementing a policy like BAD that would cause its output on the uncheckable information to be false or otherwise misleading. Thus, it seems to me like all of the problems you talk about in terms of the difficulty of getting access to inaccessible information also apply to the uncheckable information accessible via transfer.
I don't mean to say that "What's the weight of Neptune?" is accessible if a model transfers to saying "The weight of Neptune is 100kg." I mean that "What's the weight of Neptune?" is accessible if a model transfers to correctly reporting the weight of Neptune (or rather if it transfers in such a way that its answers give real evidence about the weight of Neptune, or rather that the evidence is accessible in that case, or... you can see why it's hard to be formal).
If we wanted to be more formal but less correct, we could talk about accessibility of functions from possible worlds. Then a function f* is accessible when you can check a claimed value f* (using oracles for other accessible functions), or if you can find some encoding R of functions and some value r* such that the simplest function mapping R(f) -> f(real world) for all accessible functions also maps r* -> f*(real world).
That makes sense, though I feel like under that definition having things that you care about be accessible via transfer wouldn't actually help you that much unless you know that the model transfers correctly there, since otherwise you'd have no reason to trust the transfer (even if it's actually correct). Unless you have some reason to believe otherwise (e.g. some strong robustness guarantee)—it seems to me like in most cases you have to assume that all the information you get via transfer is suspect, which makes even the correct transfer inaccessible in some sense since you can't distinguish it from the incorrect transfer.
I guess if lots of actors just try to use transfer anyway and hope, then those actors with values that actually are accessible via transfer will be advantaged, though unless you have a particular reason to suspect that your values will be more accessible than average (though I guess the point is that our values are less likely to be accessible via transfer than most AI's values), it seems like in most cases you wouldn't want to pursue that strategy unless you had no other option.
It strikes me that this post looks like a (AFAICT?) a stepping stone towards the Eliciting Latent Knowledge research agenda, which currently has a lot of support/traction. Which makes this post fairly historically important.
As an intuition pump, imagine a company that is run entirely by A/B tests for metrics that can be easily checked. This company would burn every resource it couldn’t measure — its code would become unmaintainable, its other infrastructure would crumble, it would use up goodwill with customers, it would make no research progress, it would become unable to hire, it would get on the wrong side of regulators.
It seems like part of this problem is easy-ish, and part is hard.
The easy part: seems like you can formally capture what resources are via average optimal value. A system which actually increased my average optimal value wrt the future seems quite helpful. Basically, this just an alternative statement of instrumental convergence - ceteris paribus, making sure I'm highly able to paint houses blue also probably means I can autonomously pursue my actual values.*
* This probably reads weird, but I don't have time to go in depth on this right now. Happy to clarify more later.
But, average optimal value is itself inaccessible. It's less inaccessible than eg my true moral values and desires, but it still requires reasoning about something in the world which cannot be directly observed. Furthermore, "average optimal value" relies on a notion of counterfactual that is itself an abstraction - "how well could (this person) achieve this other goal (which they won't actually pursue)". We'd have to pin down that abstraction, too.
I agree that if you had a handle on accessing average optimal value then you'd be making headway.
I don't think it covers everything, since e.g. safety / integrity of deliberation / etc. are also important, and because instrumental values aren't quite clean enough (e.g. even if AI safety was super easy these agents would only work on the version that was useful for optimizing values from the mixture used).
But my bigger Q is how to make headway on accessing average optimal value, and whether we're able to make the problem easier by focusing on average optimal value.
Suppose that I have a great model for predicting “what will Alice say next?”
I can evaluate and train this model by checking its predictions against reality, but there may be many facts this model “knows” that I can’t easily access.
For example, the model might have a detailed representation of Alice’s thoughts which it uses to predict what Alice will say, without being able to directly answer “What is Alice thinking?” In this case, I can only access that knowledge indirectly, e.g. by asking about what Alice would say in under different conditions.
I’ll call information like “What is Alice thinking?” inaccessible. I think it’s very plausible that AI systems will build up important inaccessible knowledge, and that this may be a central feature of the AI alignment problem.
In this post I’m going to try to clarify what I mean by “inaccessible information” and the conditions under which it could be a problem. This is intended as clarification and framing rather than a presentation of new ideas, though sections IV, V, and VI do try to make some small steps forward.
I. Defining inaccessible information
I’ll start by informally defining what it means for information to be accessible, based on two mechanisms:
Mechanism 1: checking directly
If I can check X myself, given other accessible information, then I’ll define X to be accessible.
For example, I can check a claim about what Alice will do, but I can’t check a claim about what Alice is thinking.
If I can run randomized experiments, I can probabilistically check a claim about what Alice would do. But I can’t check a counterfactual claim for conditions that I can’t create in an experiment.
In reality this is a graded notion — some things are easier or harder to check. For the purpose of this post, we can just talk about whether something can be tested even a single time over the course of my training process.
Mechanism 2: transfer
The simplest model that provides some accessible information X may also provide some other information Y. After all, it’s unlikely that the simplest model that outputs X doesn’t output anything else. In this case, we’ll define Y to be accessible.
For example, if I train a model to predict what happens over the next minute, hour, or day, it may generalize to predicting what will happen in a month or year. For example, if the simplest model to predict the next day was a fully-accurate physical simulation, then the same physics simulation might work when run for longer periods of time.
I think this kind of transfer is kind of dicey, so I genuinely don’t know if long-term predictions are accessible or not (we certainly can’t directly check them, so transfer is the only way they could be accessible).
Regardless of whether long-term predictions are accessible by transfer, there are other cases where I think transfer is pretty unlikely. For example, the simplest way to predict Alice’s behavior might be to have a good working model for her thoughts. But it seems unlikely that this model would spontaneously describe what Alice is thinking in an understandable way — you’d need to specify some additional machinery, for turning the latent model into useful descriptions.
I think this is going to be a fairly common situation: predicting accessible information may involve almost all the same work as predicting inaccessible information, but you need to combine that work with some “last mile” in order to actually output inaccessible facts.
Definition
I’ll say that information is accessible if it’s in the smallest set of information that is closed under those two mechanisms, and inaccessible otherwise.
There are a lot of nuances in that definition, which I’ll ignore for now.
Examples
Here are some candidates for accessible vs. inaccessible information:
II. Where inaccessible info comes from and why it might matter
Our models can build up inaccessible information because it helps them predict accessible information. They know something about what Alice is thinking because it helps explain what Alice does. In this diagram, the black arrow represents the causal relationship:
Unfortunately, this causal relationship doesn’t directly let us elicit the inaccessible information.
Scientific theories are prototypical instances of this diagram, e.g. I might infer the existence of electron from observing the behavior of macroscopic objects. There might not be any explanation for a theory other than “it’s made good predictions in the past, so it probably will in the future.” The actual claims the theory makes about the world — e.g. that the Higgs boson has such-and-such a mass — are totally alien to someone who doesn’t know anything about the theory.
I’m not worried about scientific hypotheses in particular, because they are usually extremely simple. I’m much more scared of analogous situations that we think of as intuition — if you want to justify your intuition that Alice doesn’t like you, or that some code is going to be hard to maintain, or that one tower of cards is going to be more stable than another, you may not be able to say very much other than “This is part of a complex group of intuitions that I built up over a very long time and which seems to have a good predictive track record.”
At that point “picking the model that matches the data best” starts to look a lot like doing ML, and it’s more plausible that we’re going to start getting hypotheses that we don’t understand or which behave badly.
Why might we care about this?
In some sense, I think this all comes down to what I’ve called strategy-stealing: if AI can be used to compete effectively, can humans use AI to compete on their behalf?
More precisely, for every strategy A that an AI could pursue to bring about some arbitrary outcome, is there a strategy A* that would help humans get what we want over the long term, without leaving us at a competitive disadvantage over the short term?
If so it’s good news for humanity: if most humans build AIs who execute plans like A*, then humans won’t be outcompeted by unaligned AIs who execute plans like A.
But the mere existence of A* isn’t very helpful, we need to actually be able to figure out that A* leads to human flourishing so that we can do it. If we can’t recognize plans like A*, then humanity will be at a disadvantage.
We could have a problem if the fact “A* leads to human flourishing” is inaccessible while the fact “A leads to paperclips” is accessible.
In this case, we either need to be sure that no one acts on the basis of information like “A leads to lots of paperclips,” or we need to figure out some way to access the inaccessible information that “A* leads to lots of human flourishing.”
III. Eliciting inaccessible info and the instrumental policy
I’ve been talking as if we can’t access inaccessible info (and the name is suggestive…), but I don’t think you should be convinced of that yet.
Let M be a model that reports only accessible facts — it answers questions like “what will Alice say next?” but not questions like “is Alice actually happy with the situation?” It’s built up a lot of knowledge about the world, and uses that knowledge to estimate accessible facts well as it can.
We suspect there is a related model M* that uses all of M’s machinery in order to explain what’s going on in Alice’s head. By the definition of inaccessibility, M* is at least somewhat more complex than M. So if we want to learn M*, we need a training objective that penalizes M relative to M*.
But it’s really easy to tell M* and M apart! M won’t automatically tell us what Alice is thinking, but it also won’t automatically make up credible stories that hold together. Both of those require extra complexity. So we can still hope to get M* if we train our model to (i) correctly provides accessible info, (ii) says something consistent and plausible about inaccessible info.
The real problem comes from what I’ll call the instrumental policy. Let’s say we’ve tried to dream up a loss function L(x, y) to incentivize the model to correctly answer information we can check, and gives at least plausible and consistent answers on things we can’t check. By definition, the values L(x, y) are themselves accessible.
Then it’s natural to learn a policy like: “on input x, produce the output y for which the loss L(x, y) will be minimal.” Let’s write BAD for this policy.
Put differently, BAD is the model that performs a simple substitution — when you ask it question Q, it replaces it with the meta question “What answer to question Q will make the person training me happiest?” By definition, this new question is also accessible, so it can be posed to M.
BAD may be much simpler than M*, because all it has to do is describe this substitution, whereas M* needs to build new machinery to explain inaccessible facts.
If M is very weak, BAD may perform much worse than M* because it doesn’t understand the loss function very well. But if M understands a lot about the world, and about its training process, then it seems like BAD will get at least as low a loss as M* — it’s using the same machinery as M and M*, and picking whatever value leads to the lowest loss. It can choose to report its own best estimates if that’s the best strategy, e.g. for questions where we can check. So by the time M and M* are human level, it already seems like BAD should be getting as low a loss as M*.
This gets a little bit more complicated if I do consistency checks or if I have large output spaces, and of course humans aren’t that good at lying, but it seems like the basic idea is pretty solid: once we have a model of accessible information, we can directly turn it into a model that will pass whatever checks we throw at it.
For concreteness, imagine M is a model of Alice’s behavior and we are asking it “is Alice actually happy?” Then M* is the model which translates its model of Alice’s psychology into words and explains it to us, while BAD is the model that asks “What answer would sound most believable to the person asking the question?”
The question is: if we start with model M and fine-tune it to answer inaccessible questions, is it easier to learn to articulate what it believes or is it going to learn to answer strategically?
We need to be very careful about our checks if we want to ensure that BAD doesn’t get a lower loss than M*. For example, it may turn out that sometimes the truth looks a little bit wrong to us…. And if we do everything right, then M* and BAD perform equally well, and so we may not have much control over which one we get.
IV. When inaccessible info is a safety problem
Let’s get a bit more detailed about the argument in section II. I think that our inability to access inaccessible info would become a safety problem when:
1. We care about inaccessible facts
If I only cared about accessible facts, then I might not need to ever access inaccessible facts. For example, if I cared about my life expectancy, and this was accessible, then I could ask my AI “what actions lead to me living the longest?” and execute those.
For better or worse, I think we are likely to care about inaccessible facts.
Overall I’m quite skeptical about the strategy “pick an accessible quantity that captures everything you care about and optimize it.” I think we basically need to optimize some kind of value function that tells us how well things are going. That brings us to the next section.
2. Inaccessible info is a competitive advantage
Instead of using AI to directly figure out whether a given action will lead to human flourishing over the coming centuries, we could use AI to help us figure out how to get what we want over the short term — including how to acquire resources and flexible influence, how to keep ourselves safe, and so on.
This doesn’t require being able to tell how good a very long-term outcome is, but it does require being able to tell how well things are going. We need to be able to ask the AI “which plan would put us in an actually good position next year?”
Unfortunately, I think that if we can only ask about accessible quantities, we are going to end up neglecting a bunch of really important stuff about the situation, and we’ll be at a significant competitive disadvantage compared to AIs which are able to take the whole picture into account.
As an intuition pump, imagine a company that is run entirely by A/B tests for metrics that can be easily checked. This company would burn every resource it couldn’t measure — its code would become unmaintainable, its other infrastructure would crumble, it would use up goodwill with customers, it would make no research progress, it would become unable to hire, it would get on the wrong side of regulators…
My worry is that inaccessible facts will be similarly critical to running superhuman businesses, and that humans who rely on accessible proxies will get outcompeted just as quickly as the company that isn’t able to optimize anything it can’t A/B test.
3. Some AIs can plan with inaccessible info
So far this discussion could just be about an AI missed opportunity, not an AI risk.
Things become problematic when it is possible to build AI systems that do use inaccessible info to pursue ambitious long-term goals that would conflict with human flourishing. If illegible knowledge is important enough, those systems could outcompete humans and divert some (or almost all) of our civilization’s resources.
This happens if any interesting long-term goal is accessible, i.e. if there’s any accessible goal that benefits from accumulating influence.
Why might some long-term goal be accessible?
The key asymmetry working against us is that optimizing flourishing appears to require a particular quantity to be accessible, while danger just requires anything to be accessible.
There’s a longer discussion about whether anyone would want to build such AI systems, or might be likely to do it accidentally. And another discussion about how bad it would actually be. But I think that once we satisfy the 3 properties in this section then we have a real problem, and the remaining question is one of magnitude, with a bunch of factors pulling up and down.
V. Possible responses
At a high level, we’d like to get good answers by training a model to make checkable predictions and then somehow incentivizing it to use the same machinery to also report inaccessible facts, for example by forcing it to report views and enforcing consistency.
I think there are a bunch of problems with that plan, but the strongest one is that it’s totally unclear how we ever get the intended policy rather than the instrumental policy.
Here are some possible angles of attack:
I’m generally pretty scared of these approaches since they feel pretty brittle, and people seem prone to being optimistic even before we can test or understand anything.
But I’m a bit more hopeful if we consider continuity of behavior rather than continuity in the space of policies, and if we exploit it by using a model at time T to help check the behavior of a model at time T+1.
It’s not clear how to leverage this though, since “use the simplest model” seems like an important and useful prior. We can’t just replace it with “use the cheapest model” without sacrificing competitiveness. That said, it may be able to buy us something in combination with the previous approaches.
(See discussion here and here.)
Overall I don’t see an obvious way forward on this problem, but there are enough plausible angles of attack that it seems exciting to think about.
VI. How this relates to amplification and debate
Overall I don’t think it’s very plausible that amplification or debate can be a scalable AI alignment solution on their own, mostly for the kinds of reasons discussed in this post — we will eventually run into some inaccessible knowledge that is never produced by amplification, and so never winds up in your distilled agents.
In the language of my original post on capability amplification, the gap between accessible and inaccessible knowledge corresponds to an obstruction. The current post is part of the long process of zooming in on a concrete obstruction, gradually refining our sense of what it will look like and what our options are for overcoming it.
I think the difficulty with inaccessible knowledge is not specific to amplification — I don’t think we have any approach that moves the needle on this problem, at least from a theoretical perspective, so I think it’s a plausible candidate for a hard core if we fleshed it out more and made it more precise. (I would describe MIRI’s approach to this problem could be described as despair + hope you can find some other way to produce powerful AI.)
I think that iterated amplification does address some of the most obvious obstructions to alignment — the possible gap in speed / size / experience / algorithmic sophistication / etc. between us and the agents we train. I think that having amplification mind should make you feel a bit less doomed about inaccessible knowledge, and makes it much easier to see where the real difficulties are likely to lie.
But there’s a significant chance that we end up needing ideas that look totally different from amplification/debate, and that those ideas will obsolete most of the particulars of amplification. Right now I think iterated amplification is by far our best concrete alignment strategy to scale up, and I think there are big advantages to starting to scale something up. At the same time, it’s really important to push hard on conceptual issues that could tell us ASAP whether amplification/debate are unworkable or require fundamental revisions.
Inaccessible information was originally published in AI Alignment on Medium, where people are continuing the conversation by highlighting and responding to this story.