newsletter.safe.ai
newsletter.mlsafety.org
A brief overview of the contents, page by page.
1: most important century and hinge of history
2: wisdom needs to keep up with technological power or else self-destruction / the world is fragile / cuban missile crisis
3: unilateralist's curse
4: bio x-risk
5: malicious actors intentionally building power-seeking AIs / anti-human accelerationism is common in tech
6: persuasive AIs and eroded epistemics
7: value lock-in and entrenched totalitarianism
8: story about bioterrorism
9: practical malicious use suggestions
10: LAWs as an on-ramp to AI x-risk
11: automated cyberwarfare -> global destablization
12: flash war, AIs in control of nuclear command and control
13: security dilemma means AI conflict can bring us to brink of extinction
14: story about flash war
15: erosion of safety due to corporate AI race
16: automation of AI research; autnomous/ascended economy; enfeeblement
17: AI development reinterpreted as evolutionary process
18: AI development is not aligned with human values but with competitive and evolutionary pressures
19: gorilla argument, AIs could easily outclass humans in so many ways
20: story about an autonomous economy
21: practical AI race suggestions
22: examples of catastrophic accidents in various industries
23: potential AI catastrophes from accidents, Normal Accidents
24: emergent AI capabilities, unknown unknowns
25: safety culture (with nuclear weapons development examples), security mindset
26: sociotechnical systems, safety vs. capabilities
27: safetywashing, defense in depth
28: story about weak safety culture
29: practical suggestions for organizational safety
30: more practical suggestions for organizational safety
31: bing and microsoft tay demonstrate how AIs can be surprisingly unhinged/difficult to steer
32: proxy gaming/reward hacking
33: goal drift
34: spurious cues can cause AIs to pursue wrong goals/intrinsification
35: power-seeking (tool use, self-preservation)
36: power-seeking continued (AIs with different goals could be uniquely adversarial)
37: deception examples
38: treacherous turns and self-awareness
39: practical suggestions for AI control
40: how AI x-risk relates to other risks
41: conclusion
but I'm confident it isn't trying to do this
It is. It's an outer alignment benchmark for text-based agents (such as GPT-4), and it includes measurements for deception, resource acquisition, various forms of power, killing, and so on. Separately, it's to show reward maximization induces undesirable instrumental (Machiavellian) behavior in less toyish environments, and is about improving the tradeoff between ethical behavior and reward maximization. It doesn't get at things like deceptive alignment, as discussed in the x-risk sheet in the appendix. Apologies that the paper is so dense, but that's because it took over a year.
I asked for permission via Intercom to post this series on March 29th. Later, I asked for permission to use the [Draft] indicator and said it was written by others. I got permission for both of these, but the same person didn't give permission for both of these requests. Apologies this was not consolidated into one big ask with lots of context. (Feel free to get rid of any undue karma.)
It's a good observation that it's more efficient; does it trade off performance? (These sorts of comparisons would probably be demanded if it was submitted to any other truth-seeking ML venue, and I apologize for consistently being the person applying the pressures that generic academics provide. It would be nice if authors would provide these comparisons.)
Also, taking affine combinations in weight-space is not novel to Schmidt et al either. If nothing else, the Stable Diffusion community has been doing that since October to add and subtract capabilities from models.
It takes months to write up these works, and since the Schmidt paper was in December, it is not obvious who was first in all senses. The usual standard is to count the time a standard-sized paper first appeared on arXiv, so the most standard sense they are first. (Inside conferences, a paper is considered prior art if it was previously published, not just if it was arXived, but outside most people just keep track of when it was arXived.) Otherwise there are arms race dynamics leading to everyone spamming snippets before doing careful, extensive science.
steering the model using directions in activation space is more valuable than doing the same with weights, because in the future the consequences of cognition might be far-removed from its weights (deep deceptiveness)
(You linked to "deep deceptiveness," and I'm going to assume is related to self-deception (discussed in the academic literature and in the AI and evolution paper). If it isn't, then this point is still relevant for alignment since self-deception is another internal hazard.)
I think one could argue that self-deception could in some instances be spotted in the weights more easily than in the activations. Often the functionality acquired by self-deception is not activated, but it may be more readily apparent in the weights. Hence I don't see this as a strong reason to dismiss https://arxiv.org/abs/2212.04089. I would want a weight version of a method and an activation version of a method; they tend to have different strengths.
Note: If you're wanting to keep track of safety papers outside of LW/AF, papers including https://arxiv.org/abs/2212.04089 were tweeted on https://twitter.com/topofmlsafety and posted on https://www.reddit.com/r/mlsafety
Edit: I see passive disagreement but no refutation. The argument against weights was of the form "here's a strength activations has"; for it to be enough to dismiss the paper without discussion, that must be an extremely strong property to outweigh all of its potential merits, or it is a Pareto-improvement. Those don't seem corroborated or at all obvious.
Page 4 of this paper compares negative vectors with fine-tuning for reducing toxic text: https://arxiv.org/pdf/2212.04089.pdf#page=4
In Table 3, they show in some cases task vectors can improve fine-tuned models.
Yes, I'll tend to write up comments quickly so that I don't feel as inclined to get in detailed back-and-forths and use up time, but here we are. When I wrote it, I thought there were only 2 things mentioned in the related works until Daniel pointed out the formatting choice, and when I skimmed the post I didn't easily see comparisons or discussion that I expected to see, hence I gestured at needing more detailed comparisons. After posting, I found a one-sentence comparison of the work I was looking for, so I edited to include that I found it, but it was oddly not emphasized. A more ideal comment would have been "It would be helpful to me if this work would more thoroughly compare to (apparently) very related works such as ..."
In many of my papers, there aren't fairly similar works (I strongly prefer to work in areas before they're popular), so there's a lower expectation for comparison depth, though breadth is always standard. In other works of mine, such as this paper on learning the the right thing in the presence of extremely bad supervision/extremely bad training objectives, we contrast with the two main related works for two paragraphs, and compare to these two methods for around half of the entire paper.
The extent of an adequate comparison depends on the relatedness. I'm of course not saying every paper in the related works needs its own paragraph. If they're fairly similar approaches, usually there also needs to be empirical juxtapositions as well. If the difference between these papers is: we do activations, they do weights, then I think that warrants a more in-depth conceptual comparisons or, preferably, many empirical comparisons.
Yes, I was--good catch. Earlier and now, unusual formatting/and a nonstandard related works is causing confusion. Even so, the work after the break is much older. The comparison to works such as https://arxiv.org/abs/2212.04089 is not in the related works and gets a sentence in a footnote: "That work took vectors between weights before and after finetuning on a new task, and then added or subtracted task-specific weight-diff vectors."
Is this big difference? I really don't know; it'd be helpful if they'd contrast more. Is this work very novel and useful, and that one isn't any good for alignment? Or did Ludwig Schmidt (not x-risk pilled) and coauthors in Editing Models with Task Arithmetic (made public last year and is already published) come up with an idea similar to, according to a close observer, "the most impressive concrete achievement in alignment I've seen"? If so, what does that say about the need to be x-risk motivated to do relevant research, and what does this say about group epistemics/ability to spot relevant progress if it's not posted on the AF?
Plug: CAIS is funding constrained.