scheming is the main plausible source of catastrophic risk from the first AIs that either pose substantial misalignment risk or that are extremely useful...
Seems quite wrong. The main plausible source of catastrophic risk from the first AIs that either pose substantial misalignment risk or that are extremely useful is that they cause more powerful AIs to be built which will eventually be catastrophic, but which have problems that are not easily iterable-upon (either because problems are hidden, or things move quickly, or ...).
And causing more powerful AIs to be built which will eventually be catastrophic is not something which requires a great deal of intelligent planning; humanity is already racing in that direction on its own, and it would take a great deal of intelligent planning to avert it. This story, for example:
This story sounds clearly extremely plausible (do you disagree with that?), involves exactly the sort of AI you're talking about ("the first AIs that either pose substantial misalignment risk or that are extremely useful"), but the catastropic risk does not come from that AI scheming. It comes from people being dumb by default, the AI making them think it's ok (without particularly strategizing to do so), and then people barreling ahead until it's too late.
These other problems all seem like they require the models to be way smarter in order for them to be a big problem.
Also seems false? Some of the relevant stories:
A few of the other stories also seem debatable depending on trajectory of different capabilities, but at the very least those three seem clearly potentially relevant even for the first highly dangerous or useful AIs.
Yeah, I'm aware of that model. I personally generally expect the "science on model organisms"-style path to contribute basically zero value to aligning advanced AI, because (a) the "model organisms" in question are terrible models, in the sense that findings on them will predictably not generalize to even moderately different/stronger systems (like e.g. this story), and (b) in practice IIUC that sort of work is almost exclusively focused on the prototypical failure story of strategic deception and scheming, which is a very narrow slice of the AI extinction probability mass.
I think a very common problem in alignment research today is that people focus almost exclusively on a specific story about strategic deception/scheming, and that story is a very narrow slice of the AI extinction probability mass. At some point I should probably write a proper post on this, but for now here are few off-the-cuff example AI extinction stories which don't look like the prototypical scheming story. (These are copied from a Facebook thread.)
Kudos for correctly identifying the main cruxy point here, even though I didn't talk about it directly.
The main reason I use the term "propaganda" here is that it's an accurate description of the useful function of such papers, i.e. to convince people of things, as opposed to directly advancing our cutting-edge understanding/tools. The connotation is that propagandists over the years have correctly realized that presenting empirical findings is not a very effective way to convince people of things, and that applies to these papers as well.
And I would say that people are usually correct to not update much on empirical findings! Not Measuring What You Think You Are Measuring is a very strong default, especially among the type of papers we're talking about here.
Someone asked what I thought of these, so I'm leaving a comment here. It's kind of a drive-by take, which I wouldn't normally leave without more careful consideration and double-checking of the papers, but the question was asked so I'm giving my current best answer.
First, I'd separate the typical value prop of these sort of papers into two categories:
My take: many of these papers have some value as propaganda. Almost all of them provide basically-zero object-level progress toward aligning substantially-smarter-than-human AGI, either directly or indirectly.
Notable exceptions:
I mean, there are lots of easy benchmarks on which I can solve the large majority of the problems, and a language model can also solve the large majority of the problems, and the language model can often have a somewhat lower error rate than me if it's been optimized for that. Seems like GPQA (and GPQA diamond) are yet another example of such a benchmark.
Even assuming you're correct here, I don't see how that would make my original post pretty misleading?
I remember finishing early, and then spending a lot of time going back over all them a second time, because the goal of the workshop was to answer correctly with very high confidence. I don't think I updated any answers as a result of the second pass, though I don't remember very well.
@Buck Apparently the five problems I tried were GPQA diamond, they did not take anywhere near 30 minutes on average (more like 10 IIRC?), and I got 4/5 correct. So no, I do not think that modern LLMs probably outperform (me with internet access and 30 minutes).
A few problems with this frame.
First: you're making reasonably-pessimistic assumptions about the AI, but very optimistic assumptions about the humans/organization. Sure, someone could look for the problem by using AIs to do research on other subject that we already know a lot about. But that's a very expensive and complicated project - a whole field, and all the subtle hints about it, need to be removed from the training data, and then a whole new model trained! I doubt that a major lab is going to seriously take steps much cheaper and easier than that, let alone something that complicated.
One could reasonably respond "well, at least we've factored apart the hard technical bottleneck from the part which can be solved by smart human users or good org structure". Which is reasonable to some extent, but also... if a product requires a user to get 100 complicated and confusing steps all correct in order for the product to work, then that's usually best thought of as a product design problem, not a user problem. Making the plan at least somewhat robust to people behaving realistically less-than-perfectly is itself part of the problem.
Second: looking for the problem by testing on other fields itself has subtle failure modes, i.e. various ways to Not Measure What You Think You Are Measuring. A couple off-the-cuff examples:
And to be clear, I don't think of these as nitpicks, or as things which could go wrong separately from all the things originally listed. They're just the same central kinds of failure modes showing up again, and I expect them to generalize to other hacky attempts to tackle the problem.
Third: it doesn't really matter whether the model is trying to make it hard for us to notice the problem. What matters is (a) how likely we are to notice the problem "by default", and (b) whether the AI makes us more or less likely to notice the problem, regardless of whether it's trying to do so. The first story at top-of-thread is a good central example here:
Generalizing that story to attempts to outsource alignment work to earlier AI: perhaps the path to moderately-capable intelligence looks like applying lots of search/optimization over shallow heuristics. If the selection pressure is sufficient, that system may well learn to e.g. be sycophantic in exactly the situations where it won't be caught... though it would be "learning" a bunch of shallow heuristics with that de-facto behavior, rather than intentionally "trying" to be sycophantic in exactly those situations. Then the sycophantic-on-hard-to-verify-domains AI tells the developers that of course their favorite ideas for aligning the next generation of AI will work great, and it all goes downhill from there.