I feel kinda frustrated whenever "shard theory" comes up in a conversation, because it's not a theory, or even a hypothesis. In terms of its literal content, it basically seems to be a reframing of the "default" stance towards neural networks often taken by ML researchers (especially deep learning skeptics), which is "assume they're just a set of heuristics".
This is a particular pity because I think there's a version of the "shard" framing which would actually be useful, but which shard advocates go out of their way to avoid. Specifically: we should be interested in "subagents" which are formed via hierarchical composition of heuristics and/or lower-level subagents, and which are increasingly "goal-directed" as you go up the hierarchy. This is an old idea, FWIW; e.g. it's how Minsky frames intelligence in Society of Mind. And it's also somewhat consistent with the claim made in the original shard theory post, that "shards are just collections of subshards".
The problem is the "just". The post also says "shards are not full subagents", and that "we currently estimate that most shards are 'optimizers' to the extent that a bacterium or a thermostat is an optimizer." But the whole point...
FWIW I'm potentially intrested in interviewing you (and anyone else you'd recommend) and then taking a shot at writing the 101-level content myself.
Some opinions about AI and epistemology:
That will push P(doom) lower because most frames from most disciplines, and most styles of reasoning, don't predict doom.
I don't really buy this statement. Most frames, from most disciplines, and most styles of reasoning, do not make clear predictions about what will happen to humanity in the long-run future. A very few do, but the vast majority are silent on this issue. Silence is not anything like "50%".
Most frames, from most disciplines, and most styles of reasoning, don't predict sparks when you put metal in a microwave. This doesn't mean I don't know what happens when you put metal in a microwave. You need to at the very least limit yourself to applicable frames, and there are very few applicable frames for predicting humanity's long-term future.
How can the mistakes rationalists are making be expressed in the language of Bayesian rationalism? Priors, evidence, and posteriors are fundamental to how probability works.
(Written quickly and not very carefully.)
I think it's worth stating publicly that I have a significant disagreement with a number of recent presentations of AI risk, in particular Ajeya's "Without specific countermeasures, the easiest path to transformative AI likely leads to AI takeover", and Cohen et al.'s "Advanced artificial agents intervene in the provision of reward". They focus on policies learning the goal of getting high reward. But I have two problems with this:
I'm not very convinced by this comment as an objection to "50% AI grabs power to get reward." (I find it more plausible as an objection to "AI will definitely grab power to get reward.")
I expect "reward" to be a hard goal to learn, because it's a pretty abstract concept and not closely related to the direct observations that policies are going to receive
"Reward" is not a very natural concept
This seems to be most of your position but I'm skeptical (and it's kind of just asserted without argument):
Putting my money where my mouth is: I just uploaded a (significantly revised) version of my Alignment Problem position paper, where I attempt to describe the AGI alignment problem as rigorously as possible. The current version only has "policy learns to care about reward directly" as a footnote; I can imagine updating it based on the outcome of this discussion though.
I haven't yet read through them thoroughly, but these four papers by Oliver Richardson are pattern-matching to me as potentially very exciting theoretical work.
tl;dr: probabilistic dependency graphs (PDGs) are directed graphical models designed to be able to capture inconsistent beliefs (paper 1). The definition of inconsistency is a natural one which allows us to, for example, reframe the concept of "minimizing training loss" as "minimizing inconsistency" (paper 2). They provide an algorithm for inference in PDGs (paper 3) and an algorithm for learning via locally minimizing inconsistency which unifies several other algorithms (like the EM algorithm, message-passing, and generative adversarial training) (paper 4).
Oliver is an old friend of mine (which is how I found out about these papers) and a final-year PhD student at Cornell under Joe Halpern.
Five clusters of alignment researchers
Very broadly speaking, alignment researchers seem to fall into five different clusters when it comes to thinking about AI risk:
A possible way to convert money to progress on alignment: offering a large (recurring) prize for the most interesting failures found in the behavior of any (sufficiently-advanced) model. Right now I think it's very hard to find failures which will actually cause big real-world harms, but you might find failures in a way which uncovers useful methodologies for the future, or at least train a bunch of people to get much better at red-teaming.
(For existing models, it might be more productive to ask for "surprising behavior" rather than "failures" per se, since I think almost all current failures are relatively uninteresting. Idk how to avoid inspiring capabilities work, though... but maybe understanding models better is robustly good enough to outweight that?)
Deceptive alignment doesn't preserve goals.
A short note on a point that I'd been confused about until recently. Suppose you have a deceptively aligned policy which is behaving in aligned ways during training so that it will be able to better achieve a misaligned internally-represented goal during deployment. The misaligned goal causes the aligned behavior, but so would a wide range of other goals (either misaligned or aligned) - and so weight-based regularization would modify the internally-represented goal as training continues. For example, if the misaligned goal were "make as many paperclips as possible", but the goal "make as many staples as possible" could be represented more simply in the weights, then the weights should slowly drift from the former to the latter throughout training.
But actually, it'd likely be even simpler to get rid of the underlying misaligned goal, and just have alignment with the outer reward function as the terminal goal. So this argument suggests that even policies which start off misaligned would plausibly become aligned if they had to act deceptively aligned for long enough. (This sometimes happens in humans too, btw.)
Reasons this argument might not be relevant:
- The policy doing some kind of gradient hacking
- The policy being implemented using some kind of modular architecture (which may explain why this phenomenon isn't very robust in humans)
Why would alignment with the outer reward function be the simplest possible terminal goal? Specifying the outer reward function in the weights would presumably be more complicated. So one would have to specify a pointer towards it in some way. And it's unclear whether that pointer is simpler than a very simple misaligned goal.
Such a pointer would be simple if the neural network already has a representation of the outer reward function in weights anyway (rather than deriving it at run-time in the activations). But it seems likely that any fixed representation will be imperfect and can thus be improved upon at inference time by a deceptive agent (or an agent with some kind of additional pointer). This of course depends on how much inference time compute and memory / context is available to the agent.
Probably the easiest "honeypot" is just making it relatively easy to tamper with the reward signal. Reward tampering is useful as a honeypot because it has no bad real-world consequences, but could be arbitrarily tempting for policies that have learned a goal that's anything like "get more reward" (especially if we precommit to letting them have high reward for a significant amount of time after tampering, rather than immediately reverting).
The crucial heuristic I apply when evaluating AI safety research directions is: could we have used this research to make humans safe, if we were supervising the human evolutionary process? And if not, do we have a compelling story for why it'll be easier to apply to AIs than to humans?
Sometimes this might be too strict a criterion, but I think in general it's very valuable in catching vague or unfounded assumptions about AI development.
Hypothesis: there's a way of formalizing the notion of "empowerment" such that an AI with the goal of empowering humans would be corrigible.
This is not straightforward, because an AI that simply maximized human POWER (as defined by Turner et al.) wouldn't ever let the humans spend that power. Intuitively, though, there's a sense in which a human who can never spend their power doesn't actually have any power. Is there a way of formalizing that intuition?
The direction that seems most promising is in terms of counterfactuals (or, alternatively, Pearl's do-calculus). Define the power of a human with respect to a distribution of goals G as the average ability of a human to achieve their goal if they'd had a goal sampled from G (alternatively: under an intervention that changed their goal to one sampled from G). Then an AI with a policy of never letting humans spend their resources would result in humans having low power. Instead, a human-power-maximizing AI would need to balance between letting humans pursue their goals, and preventing humans from doing self-destructive actions. The exact balance would depend on G, but one could hope that it's not very sensitive to the precise definiti...
People sometimes try to reason about the likelihood of deceptive alignment by appealing to speed priors and simplicity priors. I don't like such appeals, because I think that the differences between aligned and deceptive AGIs will likely be a very small proportion of the total space/time complexity of an AGI. More specifically:
1. If AGIs had to rederive deceptive alignment in every episode, that would make a big speed difference. But presumably, after thinking about it a few times during training, they will remember their conclusions for a while, and bring them to mind in whichever episodes they're relevant. So the speed cost of deception will be amortized across the (likely very long) training period.
2. AGIs will represent a huge number of beliefs and heuristics which inform their actions (e.g. every single fact they know). A heuristic like "when you see X, initiate the world takeover plan" would therefore constitute a very small proportion of the total information represented in the network; it'd be hard to regularize it away without regularizing away most of the AGI's knowledge.
I think that something like the speed vs simplicity tradeoff is relevant to the likelihood of deceptiv...
Imagine taking someone's utility function, and inverting it by flipping the sign on all evaluations. What might this actually look like? Well, if previously I wanted a universe filled with happiness, now I'd want a universe filled with suffering; if previously I wanted humanity to flourish, now I want it to decline.
But this is assuming a Cartesian utility function. Once we treat ourselves as embedded agents, things get trickier. For example, suppose that I used to want people with similar values to me to thrive, and people with different values from me to suffer. Now if my utility function is flipped, that naively means that I want people similar to me to suffer, and people similar to me to thrive. But this has a very different outcome if we interpret "similar to me" as de dicto vs de re - i.e. whether it refers to the old me or the new me.
This is a more general problem when one person's utility function can depend on another person's, where you can construct circular dependencies (which I assume you can also do in the utility-flipping case). There's probably been a bunch of work on this, would be interested in pointers to it (e.g. I assume there have been attempts to construct typ...
A well-known analogy from Yann LeCun: if machine learning is a cake, then unsupervised learning is the cake itself, supervised learning is the icing, and reinforcement learning is the cherry on top.
I think this is useful for framing my core concerns about current safety research:
I do think it's more complicated than I've portrayed here, but I haven't yet seen a persuasive response to the core intuition.
Oracle-genie-sovereign is a really useful distinction that I think I (and probably many others) have avoided using mainly because "genie" sounds unprofessional/unacademic. This is a real shame, and a good lesson for future terminology.
I expect it to be difficult to generate adversarial inputs which will fool a deceptively aligned AI. One proposed strategy for doing so is relaxed adversarial training, where the adversary can modify internal weights. But this seems like it will require a lot of progress on interpretability. An alternative strategy, which I haven't yet seen any discussion of, is to allow the adversary to do a data poisoning attack before generating adversarial inputs - i.e. the adversary gets to specify inputs and losses for a given number of SGD steps, and then the adversarial input which the base model will be evaluated on afterwards. (Edit: probably a better name for this is adversarial meta-learning.)
I suspect that AIXI is misleading to think about in large part because it lacks reusable parameters - instead it just memorises all inputs it's seen so far. Which means the setup doesn't have episodes, or a training/deployment distinction; nor is any behaviour actually "reinforced".
A general principle: if we constrain two neural networks to communicate via natural language, we need some pressure towards ensuring they actually use language in the same sense as humans do, rather than (e.g.) steganographically encoding the information they really care about.
The most robust way to do this: pass the language via a human, who tries to actually understand the language, then does their best to rephrase it according to their own understanding.
What do you lose by doing this? Mainly: you can no longer send messages too complex for humans to und...
There's some possible world in which the following approach to interpretability works:
One problem that this approach would face if we were using it to interpret a human is that the human might not consciously be aware of what their motivations are. For example, they may believe they are doing something for altr...
I've heard people argue that "most" utility functions lead to agents with strong convergent instrumental goals. This obviously depends a lot on how you quantify over utility functions. Here's one intuition in the other direction. I don't expect this to be persuasive to most people who make the argument above (but I'd still be interested in hearing why not).
If a non-negligible percentage of an agent's actions are random, then to describe it as a utility-maximiser would require an incredibly complex utility function (becaus...
Makes sense. For what it's worth, I'd also argue that thinking about optimal policies at all is misguided (e.g. what's the optimal policy for humans - the literal best arrangement of neurons we could possibly have for our reproductive fitness? Probably we'd be born knowing arbitrarily large amounts of information. But this is just not relevant to predicting or modifying our actual behaviour at all).
(I now think that you were very right in saying "thinking about optimal policies at all is misguided", and I was very wrong to disagree. I've thought several times about this exchange. Not listening to you about this point was a serious error and made my work way less impactful. I do think that the power-seeking theorems say interesting things, but about eg internal utility functions over an internal planning ontology -- not about optimal policies for a reward function.)