Could someone who thinks capabilities benchmarks are safety work explain the basic idea to me?
It's not all that valuable for my personal work to know how good models are at ML tasks. Is it supposed to be valuable to legislators writing regulation? To SWAT teams calculating when to bust down the datacenter door and turn the power off? I'm not clear.
But it sure seems valuable to someone building an AI to do ML research, to have a benchmark that will tell you where you can improve.
But clearly other people think differently than me.
I think the core argument is "if you want to slow down, or somehow impose restrictions on AI research and deployment, you need some way of defining thresholds. Also, most policymaker's cruxes appear to be that AI will not be a big deal, but if they thought it was going to be a big deal they would totally want to regulate it much more. Therefore, having policy proposals that can use future eval results as a triggering mechanism is politically more feasible, and also, epistemically helpful since it allows people who do think it will be a big deal to establish a track record".
I find these arguments reasonably compelling, FWIW.
Current take on the implications of "GPT-4b micro": Very powerful, very cool, ~zero progress to AGI, ~zero existential risk. Cheers.
First, the gist of it appears to be:
...OpenAI’s new model, called GPT-4b micro, was trained to suggest ways to re-engineer the protein factors to increase their function. According to OpenAI, researchers used the model’s suggestions to change two of the Yamanaka factors to be more than 50 times as effective—at least according to some preliminary measures.
The model was trained on examples of protein sequences from many species, as
Thinking through it more, Sox2-17 (they changed 17 amino acids from Sox2 gene) was your linked paper's result, and Retro's was a modified version of factors Sox AND KLF. Would be cool if these two results are complementary.
Here's an argument for a capabilities plateau at the level of GPT-4 that I haven't seen discussed before. I'm interested in any holes anyone can spot in it.
Consider the following chain of logic:
IsoFLOP curves for dependence of perplexity on log-data seem mostly symmetric (as in Figure 2 of Llama 3 report), so overtraining by 10x probably has about the same effect as undertraining by 10x. Starting with a compute optimal model, increasing its data 10x while decreasing its active parameters 3x (making it 30x overtrained, using 3x more compute) preserves perplexity (see Figure 1).
GPT-3 is a 3e23 FLOPs dense transformer with 175B parameters trained for 300B tokens (see Table D.1). If Chinchilla's compute optimal 20 tokens/parameter is approximately co...
Prior estimates imply that the compute used to train a future frontier model could also be used to run tens or hundreds of millions of human equivalents per year at the first time when AIs are capable enough to dominate top human experts at cognitive tasks[1] (examples here from Holden Karnofsky, here from Tom Davidson, and here from Lukas Finnveden). I think inference time compute scaling (if it worked) might invalidate this picture and might imply that you get far smaller numbers of h...
I think a very common problem in alignment research today is that people focus almost exclusively on a specific story about strategic deception/scheming, and that story is a very narrow slice of the AI extinction probability mass. At some point I should probably write a proper post on this, but for now here are few off-the-cuff example AI extinction stories which don't look like the prototypical scheming story. (These are copied from a Facebook thread.)
One big reason I might expect an AI to do a bad job at alignment research is if it doesn't do a good job (according to humans) of resolving cases where humans are inconsistent or disagree. How do you detect this in string theory research? Part of the reason we know so much about physics is humans aren't that inconsistent about it and don't disagree that much. And if you go to sub-topics where humans do disagree, how do you judge its performance (because 'be very convincing to your operators' is an objective with a different kind of danger).
Another potentia...
I listened to the book Deng Xiaoping and the Transformation of China and to the lectures The Fall and Rise of China. I think it is helpful to understand this other big player a bit better, but I also found this biography and these lectures very interesting in themselves:
I'm interested in soliciting takes on pretty much anything people think Anthropic should be doing differently. One of Alignment Stress-Testing's core responsibilities is identifying any places where Anthropic might be making a mistake from a safety perspective—or even any places where Anthropic might have an opportunity to do something really good that we aren't taking—so I'm interested in hearing pretty much any idea there that I haven't heard before.[1] I'll read all the responses here, but I probably won't reply to any of them to avoid revealing anythin...
As discussed in How will we update about scheming?:
While I expect that in some worlds, my P(scheming) will be below 5%, this seems unlikely (only 25%). AI companies have to either disagree with me, expect to refrain from developing very powerful AI, or plan to deploy models that are plausibly dangerous schemers; I think the world would be safer if AI companies defended whichever of these is their stance.
I wish Anthropic would explain whether they expect to be able to rule out scheming, plan to effectively shut down scaling, or plan to deploy plausibly ...
Here are the 2024 AI safety papers and posts I like the most.
The list is very biased by my taste, by my views, by the people that had time to argue that their work is important to me, and by the papers that were salient to me when I wrote this list. I am highlighting the parts of papers I like, which is also very subjective.
Important ideas - Introduces at least one important idea or technique.
★★★ The intro to AI control (The case for ensuring that powerful AIs are controlled)
★★ Detailed write-ups of AI worldviews I am sympathetic to (Without fun...
Yeah, I'm aware of that model. I personally generally expect the "science on model organisms"-style path to contribute basically zero value to aligning advanced AI, because (a) the "model organisms" in question are terrible models, in the sense that findings on them will predictably not generalize to even moderately different/stronger systems (like e.g. this story), and (b) in practice IIUC that sort of work is almost exclusively focused on the prototypical failure story of strategic deception and scheming, which is a very narrow slice of the AI extinction...
I thought it would be helpful to post about my timelines and what the timelines of people in my professional circles (Redwood, METR, etc) tend to be.
Concretely, consider the outcome of: AI 10x’ing labor for AI R&D[1], measured by internal comments by credible people at labs that AI is 90% of their (quality adjusted) useful work force (as in, as good as having your human employees run 10x faster).
Here are my predictions for this outcome:
The views of other people (Buck, Beth Barnes,...
btw, something that bothers me a little bit with this metric is the fact that a very simple AI ...
Yes, but I don't see a clear reason why people (working in AI R&D) will in practice get this productivity boost (or other very low hanging things) if they don't get around to getting the boost from hiring humans.
Here's something that confuses me about o1/o3. Why was the progress there so sluggish?
My current understanding is that they're just LLMs trained with RL to solve math/programming tasks correctly, hooked up to some theorem-verifier and/or an array of task-specific unit tests to provide ground-truth reward signals. There are no sophisticated architectural tweaks, not runtime-MCTS or A* search, nothing clever.
Why was this not trained back in, like, 2022 or at least early 2023; tested on GPT-3/3.5 and then default-packaged into GPT-4 alongside RLHF? If OpenAI ...
simple ideas often require tremendous amounts of effort to make work.
On o3: for what feels like the twentieth time this year, I see people freaking out, saying AGI is upon us, it's the end of knowledge work, timelines now clearly in single-digit years, etc, etc. I basically don't buy it, my low-confidence median guess is that o3 is massively overhyped. Major reasons:
What do you mean by "easy" here?
Work that I’ve done on techniques for mitigating misalignment risk often makes a number of conservative assumptions about the capabilities of the AIs we’re trying to control. (E.g. the original AI control paper, Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats, How to prevent collusion when using untrusted models to monitor each other.) For example:
Some other important categories:
x-posting a kinda rambling thread I wrote about this blog post from Tilde research.
---
If true, this is the first known application of SAEs to a found-in-the-wild problem: using LLMs to generate fuzz tests that don't use regexes. A big milestone for the field of interpretability!
I'll discussed some things that surprised me about this case study in
---
The authors use SAE features to detect regex usage and steer models not to generate regexes. Apparently the company that ran into this problem already tried and discarded baseline approaches like better prompt ...
This uses transformers
, which is IIUC way less efficient for inference than e.g. vllm
, to an extent that is probably unacceptable for production usecases.
I'm currently working as a contractor at Anthropic in order to get employee-level model access as part of a project I'm working on. The project is a model organism of scheming, where I demonstrate scheming arising somewhat naturally with Claude 3 Opus. So far, I’ve done almost all of this project at Redwood Research, but my access to Anthropic models will allow me to redo some of my experiments in better and simpler ways and will allow for some exciting additional experiments. I'm very grateful to Anthropic and the Alignment Stress-Testing team for providi...
I asked Rohin Shah what the debate agenda is about and he said (off the cuff, not necessarily worded well) (context omitted) (emphasis mine):
...Suppose you have any task where given an input x the AI has to produce some output y. (Can be question answering, arbitrary chatbot stuff, being an agent, whatever.)
Debate to me is a family of procedures for training AIs in such settings. One example such procedure is: sample two possible outputs y1 and y2, then have two AIs debate each other about which output is better (one assigned to y1 and the other assigned to y
I could imagine other ways you might choose to instead train your untrusted monitor, which could benefit from debate:
Idea for LLM support for writing LessWrong posts: virtual comments.
Back in August I discussed with Rafe & Oliver a bit about how to integrate LLMs into LW2 in ways which aren't awful and which encourage improvement---particularly using the new 'prompt caching' feature. To summarize one idea: we can use long-context LLMs with prompt caching to try to simulate various LW users of diverse perspectives to write useful feedback on drafts for authors.
(Prompt caching (eg) is the Transformer version of the old RNN hidden-state caching trick, where you run an i...
Yeah the LW team has been doing this sort of thing internally, still in the experimental phase. I don't know if we've used all the tricks listed here yet.
Phi-4: Synthetic data works. Pretraining's days are numbered.
Microsoft just announced Phi-4, a 14B parameter model that matches GPT-4o on some difficult benchmarks. The accompanying technical report offers a glimpse into the growing importance of synthetic data and how frontier model training is changing.
Some takeaways:
I don't think Phi-4 offers convincing evidence either way. You can push performance on verifiable tasks quite far without the model becoming generally more capable. AlphaZero doesn't imply that scaling with its methods gestures at general superintelligence, and similarly with Phi-4.
In contrast, using o1-like training as a way to better access ground truth in less tractable domains seems more promising, since by some accounts its tactics on long reasoning traces work even in non-technical domains (unlike for DeepSeek R1), possibly because they are emergent ...
Concrete benchmark proposals for how to detect mode-collapse and AI slop and ChatGPTese, and why I think this might be increasingly important for AI safety, to avoid 'whimper' or 'em hell' kinds of existential risk: https://gwern.net/creative-benchmark EDIT: resubmitted as linkpost.
People inexplicably seem to favor extremely bad leaders-->people seem to inexplicably favor bad AIs.
Agency = Prediction + Decision.
AIXI is an idealized model of a superintelligent agent that combines "perfect" prediction (Solomonoff Induction) with "perfect" decision-making (sequential decision theory).
OpenAI's o1 is a real-world "reasoning model" that combines a superhuman predictor (an LLM like GPT-4) with advanced decision-making (implicit search via chain of thought trained by RL).
To be clear: o1 is no AIXI. But AIXI, as an ideal, can teach us something about the future of o1-like systems.
AIXI teaches us that agency is simple. It involves just two ra...
So let's call "reasoning models" like o1 what they really are: the first true AI agents.
I think the distinction between systems that perform a single forward pass and then stop and systems that have an OODA loop (tool use) is more stark than the difference between "reasoning" and "chat" models, and I'd prefer to use "agent" for that distinction.
I do think that "reasoning" is a bit of a market-y name for this category of system though. "chat" vs "base" is a great choice of words, and "chat" is basically just a description of the RL objective those models were trained with.
If I were the terminology czar, I'd call o1 a "task" model or a "goal" model or something.
LW2 search idea: hierarchical embedding trees using some nifty "seriation" list sorting tricks I've developed for Gwern.net popups/tagging purposes.